
Fkicop Document No. 0080B-001&

E Cop Y17 March 1989

00 STARS Technical Plan Analysis (Final)
0 for the

for Adaptable 1 .

PROCESS

IA

RATIONAL

Ada

Contract No. F19628-88-D-0032

CDRL Sequence No. 0080B D iC

17 March 1989 'NOV 0 9 199011

I_. ht31pN WT



Form Approved
REPORT DOCUMENTATION -PAGE 0MB No. 0704.0188

Pubi c twrocrtnq burden tor this kc ritr l n t nfrr i t,- N. st n,,tea I 0 ' e. i I r r oe , e nav w am1 the nt * tc ce.ew j nstr.-t,,.n m. o 4 e stn data .urk s
eltherli 3rd lmalintiing the i3 iree ,arawrro-els- n O inohvew, viiP~e , iv n~t,,rf Wroj "eO Qlm r1. 0"1,ln I it, )". nut, Se '~r Jn, Athf el t of th ,

(O' e(voisc intormitiof.n, niu nq 5uqqtt.ons ttr teun tnote tQ AV ish.nyton tiedqumos Sevcs iotrt 1-- -~m'tcn vcer itin Ana tHt'ft. I 1 elewt
01 cqv$ lllf , 5u~t( 1104 A/rqcton, v A 1220J-4302 i rP to th,, Ott#- P ot %I an-ijernen; A rd 6S.0 jl.t P ) .vrw~rK, Rtdurtwnn Ptcle.% (WCf4-018W, Vlv.) 1inqt ,n, LI (. 0S0;

i. AGENCY USE ONLY (Ledve blank) 2 3. REPORT TYPE AND DATES COVERED
March 17, 1989 Final

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

STARS Technical Plan Analysis (Final) C: F19628-88-D-0032

6. AUTHOR(S)

R. Ekman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

IBM Federal Sector Division REPORT NUMBER

800 N. Frederick Avenue

Gaithersburg, MD 20879

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDPESS(ES) 10. SPONSORINGd MONITORING
AGENCY REPORT NUMBER

Electronic Systems Division

Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000 CDRL Sequence No. 0080B

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The revised top-level technical program plan for the STARS program. It describes

the goals of the program, the technical approach to achieve these goals, the

products to be delivered, and the product milestones and funding requirements.

14. SUBJECT TERMS 15. NUMBER OF PAGES

61
STARS 16. PRICE CODE(17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Preset ,0'd by ANSI Std 139-18

21)H W



STARS Technical Plan Analysis (Final)
for the

Software Technology for Adaptable, Reliable Systems
(STARS) Program

Contract No. F1 9628-88-D-0032

CDRL Sequence No. 0080B

17 March 1989

Accession For

NTIS GRA&I &'
DTIC TAB 5"I
Unannounced
Justifi catlon

Prepared for: Dittribution/

Availability Godos
Electronic Systems Division Avail and/or

Air Force Sys'iems Command, USAF Dist Special
Hanscom AFB, MA 01731-5000 I

ir"

Prepared by:

IBM Systems Integration Division
18100 Frederick Pike

Gaithersburg, MD 20879



Abstract
-1

The current STARS Technical Program Plan (TPP) was published in August 1986. It contained
a general plan to address the growing tomplexity and cost of mission critical software and specific
guidance for STARS program participants2' Since ttat time, new technologies have emerged and
software development methods have evolved.

The STARS Prime Contrn -tor Q 1 task was established to address the shortcomings of the TPP.
The primary objectives of ,he Q I task were to analyze and republish the TPP. This report (IBM
STARS CDRL Sequence Number 0080B) contains the revision of the TPP as an appendix. The
body of the report contains sections on the research, analysis, and conclusions of the Qi task.

The overall organization aid corent of the 1986 TPP remains appropriate and useful. Minor
changes have been made to some sect- ns and lists. It has also been updated to reflect recent de-
velopments, especially the results of t' e STARS foundation tasks, shadow programs, and the re-
cently award .d prime contracts.

The 1986 TPP contained a broad approach to improving software development. It addressed the
Ada language issues, development life cycle, standardization, and relationship to other programs.
In the near term, the STARS program is focusing on the software development life cycle and re-
moving the inhibitors to software reuse.. This emphasis has been incorporated in the revised TPP,
while retaining the comprehensive nature of the 1986 TPP.

The ideas in this report were collected through discussions with participants in the STARS pro-
gram, literature research, and review of STARS repository documents. Material from recent pres-
entations on the direction of the STARS program were also used. Referenced documents and
supporting documents are listed in the bibliography.

A/r

Abstract ii



Table of Contents
Introduction ........................................................... 1I
Scope...............................................................1I
Task Description.......................................................1I

Research ............................................................ 2
Major Influences on MCCR Software Development ............................... 2
Definition of Productivity ................................................. 3

Analysis............................................................. 5
STARS Program Documentation........................................... 5
General Changes....................................................... 5
Specific Changes ........................................................ 6
Potential Changes ....................................................... 8

Conclusions .......................................................... 9
Lessons Learned ........................................................ 9
Recommendations ..................................................... 9

Acronyms ............................................................ 11

References ........................................................... 12
STARS Documents.................................................... 12
Industry Publications................................................... 12

Appendix A. Revised TPP................................................ 14

Table or Contents i



Introduction

Scope
This report, IBM Contract Data Requirements List (CDRL) Sequence Number 0080B, is the final
deliverable defined in the STARS Prime Contractor Delivery Order, Statement of Work, Paragraph
3.0, Task Q I: Technical Plan Analysis [RFP87].

In this report, IBM presents an analysis of the STARS Technical Program Plan (TPP), 6 August
1986 ITPP86], and the conclusions of tile STARS QI task. As an appendix to this report, IBM
presents a complete revision of the TPP. This revision is based on the research, analysis, and review
conducted during the Q 1 task performance period. Preliminary analysis and revision comments
were presented in the informal report IBM CDRL 0080A, 17 December 1988 [IBM0080A].

Initially, the Q I task had only one CDRL (Sequence Number 0080). During the task performance
period, it was determined that a better solution to the task problem was to have the period of per-
formance extended and an additional CDRL defined. The original CDRL 0080 was changed to
CDRL 0080A and the new CDRL was designated CDRL 0080B. This change was agreed to by
the STARS Joint Program Office in November 1988.

Task Description
The STARS TPP is the highest level technical document in the suite of STARS program doc-
umentation and deliverables. It was last published in 1986. Since that time, the following devel-
opments have signalled that a review and update of the TPP is warranted:
* Completion of STARS Foundation Tasks.

* Completion of STARS Shadow Programs.
* Awarding of STARS Prime Tasks.
* Deliveries of initial STARS Prime documents.
* Changes in software development platforms and environments.
* Development and refinement of software development technologies.
* Continued pressures on DoD research funding.

To update the plan, the STARS prime Q I task was established. This task was divided into two
subtasks:

* Analyze the TPP and research related technical issues, and then

" Revise and republish the TPP.

Both subtasks required a delivered report on the subtask research and analysis. The first subtask
report included an annotated copy of the current TPP. The second report, this report, includes a
final revision of the TPI.

Introduction 1



Research
The following research was used to augment the analysis of the TPP and support judgments made
during the revision.

Major Influences on MCCR Software Development
Significant changes are taking place to the tools and technologies that will be used by software en-
gineers in the 1990s. Many of these changes will become rcasonably mature during the STARS
program. As stated in the TPP, the STARS program must use and potentially influence these
changes to address the needs of Mission Critical Computer Resources (MCCR).

The following technology areas have been identified through Q I task researcii. s having the greatest
influence on software engineering in the 1990s.

High Powered Workstations - Almost all software development in the 1990s will be accom-
plished from workstation based systems. The best workstations will be high powered system
(by today's standard) with a large high resolution screen, extensive keyboard, infinite virtual
memory, gigabytes of local storage, and auxiliary input devices such as a mouse and a scanner.
The targets for the software development activity will be based on the needs of the application
(i.e., embedded micros, unique chips, commercial mainframes). The program requirements to
develop on target machines will be diminished.

" High Quality Documentation - Engineers currently spend at least 60% of their effort in non-
code activities, such as documentation and general communication [COST]. Mono-font im-
pact printer documentation will disappear as electrostatic printers become common and cost
effective. Screen and printer interfaces will merge and WYSIWYG printing will be common.
The ease of use and increased processing speed will reduce the documentation burden on the
engineers. Image storage, retrieval, and manipulation will begin to enter software development
environments but will not have a major effect.

* Extensive Networking - Government and industry networks have already significantly altered
the software engineer's approach to software development. Electronic mail, office automation
software, bulletin boards, electronic conferences, repositories, dial access, and local area net-
works will continue to provide an ever expanding universe of information. The availability
of these systems will have a major influence on human communications and DoD program
operations. Electronic delivery, electronic peer review, and shared technology will become
common and move the industry toward a paper-less environment [PAPER].

* Graphical Software Design - This area will mature in the next few years [DESIGN). The major
breakthrough will come when software can be maintained in a form that permits multiple
views, such as graphic and code, and when changes in any view will be reflected in the other
views autuillatitally.

" New Data Organizations - Improved data organizations are required to support the vast
amounts of information underlying the other changing technologies, such as configuration
management and documentation. Entity-Relationship-Attribute (ERA) data systems are one
type of data organization that can meet the need. Object oriented development is a natural fit
for ERA systems. Hypertext technology and related products fall in this same category of
improved ways of looking at information [HYPER].

Research 2



Standard Interfaces - The layering of the software development environment and the stand-
ardization of interfaces between the layers will allow for the creation of plug compatible soft-
ware parts. Flexible, extensible, and portable architectures will develop when interfaces and
layers are better established. These architectures will support customization to different ap-
plication domains [ENV].

" Development Life Cycle Changes - Software-First life cycle, rapid prototyping, Computer
Aided Acquisition and Logistics Support (CALS), and related developments ISPIRAL] will
have significant direct effect on the productivity of software engineers. New procurement
processes must be used to allow the new technologies to flourish [PROD). Legal issues, such
as data rights and liability, are potential roadblocks and must be resolved in parallel with the
technology issues [LEGAL].

* Human Behaviors - The behaviors of the participants in the system development process are
the most powerful potential for productivity improvements [BEHAVE]. Engineers, procure-
ment officers, users, customers, contractors, and vendors working together with an enhanced
problem domain understanding will make significant reductions in system costs and time to
deployment.

Definition of Productivity
Since the major objective of the STARS program is to increase software engineering productivity,
a research activity was conducted under the Q I task to refine this objective. Engineers in IBM and
the industry were a-',cd to give their opinions on software productivity. In addition, industry and
government publications were reviewed for definitions and experiences [COST]. The following is
a brief discussion resulting from this research.

The current definition of software productivity in IBM Systems Integration Division is product
developed per labor month of effort expended, normalized to a standard work scope. The product
developed is measured in uits of source lines of code (SLOC). The labor expended is measured
in labor months (LM).

This definition requires a further definition of SLOC, scope of work, and the life cycle model. For
example, SLOC could be defined as lines of code or language statements. Scope of work could be
defined as total life of project or just software development. In some cases, lines of documentation
or design are also quoted (SLOD). These issues will not be analyzed here, since most projects make
these refinements as required, although they are not consistent across projects.

The basic algorithm for software productivity is given as:

SLOC/LM

The increasing use of existing code (reuse) has created a modification to the definition of SLOC.
Total SLOC is characterized as "new"(NSLOC), "reused"(RSLOC), or "reused but
changed"(CSLOC). Value weighting factors (WR and WC) are used for each class other than new.
Further, complexity coefficients (CCN, CCR, and CCC) are also used. So total SLOC is then
defined as equivalent SLOC:

ESLOC = (NSLOC * CCN) + (RSLOC * WR * CCR) + (CSLOC * WC * CCC)

Another idea frequently mentioned is that productivity should be measured only in the delivered
product (DSLOC). The previous ESLOC definition assumed that SLOC was the total code writ-
ten, regardless of whether it was delivered.

There are other measures of productivity that have merit and could be used:

* Function Points (FP,'LM) -This method defines productivity based on the functions addressed
by the software development activity. A related method is based on feature points.

* Delivered Machine Instructions (DMILM) -Since ultimately all executable software ends up
as ma;hine instructions, these machine instructions could be used to measure productivity.

Research 3



This method requires an additional factor to account for data within the machine instruction
unit.

From a pragmatic point of view, productivity could be defined as the cost to produce the
product (cost/time). This is frequently referred to as "bum rate" and proceduralized in the
"earned value" process. This method also has the advantage of accounting for activities not
directly associated with coding, such as documentation and meetings.

The research resulted in the definition that productivity is the rate of producing software products,
but the measured value over time could be against many different forms of the product [PROG].

Research 4



Analysis
In 1986, the STARS program documentation was completely revised and rebaselined. Since thcn,
this documentation has been augmented by the deliverables of the various STARS program con-
tracts.

The first task in the analysis of the TPP was to decide where in the structure of documents the TPP
belonged and what was the appropriate content. The TPP was then reviewed for general content
and organization. This task identified which sections should be deleted, moved to other documents,
moved to other areas of the TPP, and finally, which sections should be augmented. The final task
was to make minor additions and modifications.

STARS Program Documentation
The highest level document in the STARS hierarchy of documentation is the STARS Program
Management Plan (PMP). The PMP, based on DoD directives and authorizations, contains
programatic, financial, and organizational information [PMPJ. It also provides direction for in-
dustry contracting and service relationships.

The TPP, subordinate to the PMP, provides overall technical direction for the STARS program.
It describes functional objectives that hre useful in describing the program to the DoD and industry.
It contains the description of the program elements: prime contracts, foundation tasks, and shadow
programs.

Each program element has developed its own suite "f documents. The foundation and shadow
programs are now effectively completed. Their work, while important for the success of the
STARS program, has little influence on the technical content revision of the TPP.

The prime contractors have developed a consolidated plan that addresses the technical direction of
the continuing STARS program [IBM0070]. They have also developed documents that describe
specific technology subjects in great detail [IBM01 10, IBM0360]. In addition, the prime contractors
have developed innovative ideas that relate to the TPP through presentations, peer review, and
meetings.

General Changes
The following general changes have been incorporated in the revised TPP:

* Material that was replicated in the PMP has been removed.

" Specifics on future delivery dates and content have been removed.

• Program operations and financial material has been removed.

* Updates were made to reflect the completion of STARS shadow and foundation tasks and the
selection of prime contractors.

* The importance of products and environments has been de-emphasized. This position is
substantiated by numerous articles on software engineeiing [BULLET, COST, PROD]. The

Analysis 5



software "crisis" will be relieved by changes in human behavior and not hardware or software
environments [BEHAVE).

Life cycle support and standard interfaces have been emphasized. This is documented in the
STARS Consolidated Plans [IBM0070] and referenced articles on software environments
[ENV]. Th.e environment must have capabilities as defined in the Q3 task summary
[IBMOI 101.

Specific Changes
The following specific changes have been incorporated into the revised TPP:

* Section 3.2 Productivity Improving Opportunities - Specific productivity goals and measure-
ments were removed. Emphasis on a particular form of measured productivity or specific
improvement factor will dilute the efforts required to meet the objectives of the program.
Because of the vagueness of productivity, the TPP should not quote a specific figure for im-
provement, but rather assume it will be easily recognized.

* Section 3.2.3 Software Reuse - A chart on the ihibitors to software reuse was added.

* Section 3.3 Software-First Processes The software-first process definition was given more de-
tail. A figure on the Software-First Life Cycle was added.

* Section 3.4 Standardization Support - The prime contractor's consolidated plan generic ar-
chitecture was used to replace the figure on generic interfaces.

* Section 4.2 Shadow Demonstrations - The criteria for the shadow programs selection were
made into a list.

* Section 4.3.2 MCCR Software Engineering Environments - The list of framework principles
was reorganized. Items were divided among the three sections: Frameworks, Process Control,
and Database.

" Section 4.4.1.2 Standards - Items were added to the list: SQL, OSI, POSIX, IRDS, X-
Windows.

* Section 4.5 Breakthrough Initiatives - The concepts in risk reduction have been focused on
breakthrough initiatives. A figure has been added.

• Section 5 Technical Guidance - The use of an Ada command language has been soften.
Guidance on the following items has been added:

" documentation
" networks/repositories
" data rights
" peer review

* Appendices - Two appendices were added to hold the details of the Shadow Projects and the
Prime Contracts.

he following chart maps the 1986 TPP headers to the revised TPP headers. The "Revision Bar"
indicates the sections that received substantial modifications or additions.

Analysis 6



Revision
1986 TPP Headers Bar Revised TPP Headers

EXECUTIVE SUMMARY I EXECUTIVE SUMMARY
SECTION 1 - BACKGROUND SECTION 1 - BACKGROUND
1.1 Software Engineering Criticality 1.1 Software Engineering Criticality
1.2 Scope of the STARS Program 1.2 Scope of the STARS Program
1.3 Stars Funding 1 1.3 STARS Program Funding
SECTION 2 - OBJECTIVE SECTION 2 - OBJECTIVE
2.1 Defense Systems of the Nineties 2.1 Defense Systems of the Nineties
2.2 Capabilikies Needed Z.2 Capabilities Needed
SECTION 3 - TECHNICAL STRATEGY SECTION 3 - TECHNICAL STRATEGY
3.1 Leverage Approach 3.1 Leverage Approach
3.2 Productivity-improving Opportunities 3.2 Productivity Improving Opportunities

3.2.1 Ada - The Language of Choice
3.2.2 Labor Saving Tools
3.2.3 Software Reuse

3.3 Software-first Processes 3.3 Software-First Processes
3.4 Ada - the Language of Choice (moved to 3.2.1)
3.5 Standardization Support 3.4 Standardization Support
3.6 Relationships to Certain Other Programs 3.5 Relationships to Other Programs
3.7 Restructuring of the FY 1986 Program I 3.6 Changes to the STARS Program
SECTION 4 - TECHNICAL PROGRAM SECTION 4 - TECHNICAL PROGRAM
4.1 Program Struciure 4.1 Program Structure
4.2 Shadow Demonstrations 4.2 Shadow Demonstrations
4.2.1 1985-Planned Applications I (moved to Appendix B)
4.2.2 FY 1986 Shadow Projects I (moved to Appendix B)
4.2.3 Shadow Criteria I (moved to 4.2)
4.3 Product Development 4.3 Product Development
4.3.1 Technology Integration 4.3.1 Technology Integration
4.3.2 MCCR Software Engineering Environments 4.3.2 HCCR Software ki,3ineering Environments
4.3.2.1 Frameworks I 4.3.2.1 Frameworks
4.3.2.2 Control Processes I 4.3.2.2 Process Control

I 4.3.2.3 Database
4.4 Technology Development 4.4 Technology Development
4.4.1 Adaptable Software Technolcgy 4.4.1 Adaptable Software Technology
4.4.1.1 Foundation Ada Capabilities 4.4.1.1 Foundation Ada Capabilities
4.4.1.2 Standards 4.4.1.2 Standards
4.4.1.3 Repository 4.4.1.3 Repository
4.4.1.4 Design by Succ,-tive Refinement 4.4.1.4 Design by Successive Refinement
4.4.2 Reliable Software Technology 4.4.2 Reliable Software Technology
4.4.2.1 Computer Aided Methods 4.4.2.1 Computes Aided Methods
4.4.2.2 Domain Integration 4.4.2.2 Domain Integration
4.4.2.3 Formal Methods 4.4.2.3 Formal Methods
4.5 Risk Reducticn I 4.5 Breakthrough Initiatives
SECTION 5 - TECHNICAL GUIDANCE SECTION 5 - TECHNICAL GUIDANCE
SECTION 6 - PRODUCTS AND MILESTONES SECTION 6 - PRODUCTS AND MILESTONES
6.1 Shadow MCCR Systems 6.1 Shadow MCCR Systems
6.2 Software Developrmnt Environments I 6.2 Software Development Environments
6.3 Technology Development 6.3 Technology Development
6.4 Fundamental Research 6.4 Fundamental Research
6.5 Detailed Milestones I (moved to 6.2)
SECTION 7 - REFERENCES SECTION 7 - REFERENCES
APPENDIX A - FOUNDATION CAPABILITIES APPENDIX A - FOUNDATION CAPABILITIES
A.1 General Fragments A.1 General Fragments
A.1.1 Command Languages A.1.1 Command Languages
A.l.2 Document/Text Preparation A.1.2 Document/Text Preparation
A.1.3 Database Support A.1.3 Database Support
A.1.4 Operating System Fragments A.1.4 Operating System Fragments
A.1.5 Graphics Support A.1.5 Graphics Support
A.1.6 Network Support A.1.6 Network Support
A.2 Automated Environment Fragments A.2 Automated Environment Fragments
A.2.1 Design Description and Analysis A.Z.I Design Description and Analysis

I A.3 Fc--datic., Dclivcrics
I APPENDIX B - SHADOW PROJECTS
I APPENDIX C - PRIME CONTRACTORS
I C.1 Consolidated Plan
I C.2 First Increment Deliveries

Analysis 7



Potential Changes
Tile following changes were identified as desirable in the preliminary analysis, but have not been
iicorporated into the TPP at this time:

* A more detailed commercial motivation plan could be added to Leverage Approach section
(3.1). The acquisition process and legal issues could be further explained. Delaying this detail
was warranted, since the government is currently engaged in major revisions to these policies.

* A clearer definition of the environment framework could be added to the Environment section
(4.3.2). This definition will be developed by the prime contractors and could be added in a
future revision.

More detail on the results of the program elements (foundations, shadows, primes) could be
added to the Appendices. This material was not generally available and collection of it was
lower priority than the revising the overall document.

Justification for the technical guidance section should be established. Industry experiments and
articles supporting the guidance could be referenced. This was also a low priority task and
may benefit from the current prime contractor efforts.

Analysis 8



Conclusions
Generally, the TPP was acceptable and required only a revision to bring it up-to-date. The plan
was balanced, reasonable, understandable, and not overly ambitious. The section headings and
order of topics only required minor modifications, Major additions were made based on the
STARS prime contractor efforts. The updated TPP is included in this report as an appendix.

Lessons Learned
Besides updating the TPP, the Q 1 task activities have resulted in an increased appreciation of the
following issues:

* Improved communications, on the human and hardware level, is key to solving the difficult
problems facing the software engineer. The STARS prime contractors' repositories and net-
works are now established. These systems, along with corporate and DoD networks, will
previde access to STARS developed data to a significant number of engineers. This form of
netwcrking will be a major aspect of reducing elapsed time in system development.

* Face-to-face communications have been very successful in making progress on difficult issues.
The work of the STARS prime contractors on the Consolidated Plan JIBM0070] and the
Consolidated Reusability Guidelines [IBM0380] are examples of how we can make progress.
The STARS workshops have also been successful in developing a STARS community and
transferring experience among the participants.

* Making suggestions for updating a document and actually updating the document are two
different activities, much the same as code reviews and code modifications. It was easy to
comment on the areas to change in the TPP. It has been difficult to establish consensus on
the changes, collect detail for the changes, and then publish the revision.

Recommendations
The following are specific recommendations resulting from the Q 1 task activities:

* The TPP, along with other program wide plans, should be reviewed and republished annually.
This process should be coordinated through the STARS Joint Program Office.

A 1hc QI ask updated only the T PP, but to be itellectually complete, the PMP should also
be revised. Given the work started for the TPP, this additional task should not be as large as
the Q 1 task, but would require effort from the STARS Joint Program Office and contacts with
the various DoD project agencies and funding organizations.

The following considerations have helped in revising the TPP, and should be addressed for
future revisions:

The TPP, PMP, consolidated plans, direction memoranda, and related program wide
documents should be kept on-line and in a form for future electronic processing.

" A historical trail of program changes and results should be maintained and optimally kept
on-line for easier collection and summarization of program status. This information
should include participant names, financial expenditures, and rniscellaneous notes.

Conclusions 9



The STARS community members must participate in the revision process through elec-
tronic on-line methods.

As identified in the research task, many new technologies will be available for the software
engineer in the 1990s. The STARS program should take advantage of these developments,
but not become overly involved in them since they will evolve with existing industry efforts.
The STARS program should concentrate in technology thrusts that are not covered by in-
dustry interests but that are critical for DoD programs.

As a community, we need to increase our use of improved methods to deal with the technology
explosion. The number of new products, articles, and ideas that are pouring out of the com-
puter industry is staggering. It has become impossible for the engineers to digest all this ma-
terial. Enhanced electronic media centers and expanded on-line research database systems will
satisfy some of this need. Legal and business inhibitors to these on-line capabilities should be
addressed and reduced.

Conclusions 10



Acronyms
Acronym Acaning

APSE Ada Programming Support Environment

CALS Computer-Aided Acquisition and Logistics Support

CDRL Contract Data Requirements List

DoD (United States) Department of Defense

DARPA Defense Advanced Research Projects Agency

DIANA Descriptive Intermediate Attributed Notation for Ada

ERA Entity-Relationship-Attribute

IBM International Business Machines

IRDS Information Resource Dictionary System

LM Labor Month

MCCR Mission Critical Computer Resource

OSI Open Systems Interconnect

PDL Program Design Language

PMP (STARS) Program Management Plan

POSIX Portable Operating Systems

SGNIL Standard Generalized Markup Language

SLOC Source I ines of Code

SQL Structured Query Language

STARS Software Technology for Adaptable, Reliable Systems

TPP (STARS) Technical Program Plan

WYSNIYG What-you-see-is-what-you-get

Acronyms 11



References

STARS Documents
ITPP861 United States Department of Defense, STARS Joint Program Office, STARS

Technical Program Plan, August 6, 1986.

IPMP861 United States Department of Defense, STARS Joint Program Office, STARS Pro-
gram Management Plan, August 6, 1986.

IlBM00701 IBM Systems Integration Division, Consolidated Technical Development Planfor the
Software Technology for Adaptable, Reliable Systems (STARS) Competing Prime
Contractors, CDRL Sequence No. 0070, November 11, 1988.

IIBMOO8OAI IBM Systems Integration Division, STARS Technical Plan Analysis, CDRL Se-
quence No. 0080A, December 17, 1988.

JIBM01 101 IBM Systems Integration Division, Environment Capability Matrix, CDRL Se-
quence No. 0110, March 17, 1989.

[IBM03601 IBM Systems Integration Division, Reusability Guidelines, CDRL Sequence No.
0360, December 17, 1988.

IRFP871 United States Department of Defense, Department of the Air Force, STARS Com-
peting Primes Lead Contracts Request For Proposal, F 19628-88-R-00 11, November
5, 1987.

Industy Publications
ISPIRALI Boehm, B.W., "A Spiral Model of Software Development and Maintenance", IEEE

Transactions on Software Engineering, Vol. 14, No. 10, October 1988.

[COSTI Boehm, B.W. and Papaccio, P.N., "Understanding and Controlling Software
Costs", IEEE Computer, Vol. 21, No. 5, May 1988.

IBULLETi Brooks, F.P., "No Silver Bullet, Essence and Accidents of Software Engineering",
IEEE Computer, Vol. 20, No. 4, April 1987.

[BEIIAVEJ Curtis, B., Krasner, H., and Iscoe, N., "A Field Study of the Software Design
Process for Large Systems", ACM Communications, Vol. 31, No. 11, November
1988.

References 12



[DESIGN] Davis, A., "A Comparison of Techniques for the Specification of External System

Behavior", ACM Communications, Vol. 31, No. 9, September 1988.

IHYPER] Fiderio, J. "A Grand Vision", BYTE, Vol. 13, No. 10, October 1988.

IPAPERI Hansen, W.J. and Hass, C., "Reading and Writing with Computers: A Framework
for Explaining Differences in Performance", ACM Communications, Vol. 31, No. 9,
September 1988.

IPROGI Jones, C., Programming Productivity, McGraw-Hill Book Company, 1986.

[ENVI Penedo, Maria II., and William E. Riddle, "Software Engineering Environment
Architectures, Guest Editors' Introduction", IEEE Transactions on Software Engi-
neering, Vol. 14, No. 6, June 1988.

[IPROD] Port, 0., "How the New Math of Productivity Adds Up", Business Week, June 6,
1988.

ILEGALI Shore, J., "Why I Never Met a Programmer I Could Trust", ACM
Communications, Vol. 31, No. 4, April 1988.

References 13



Appendix A. Revised TPP
The following document is a revised publication of the STARS Technical Program Plan (TPP).
Reviewers of the revised document are encouraged to make annotations and forward them to:

Robert W. Ekman
IBM Systems Integration Division
18100 Frederick Pike
Gaithersburg, MD 20879
phone: (301) 240-6431
IBM VNET: rckvml(ekmanb)
ARPANet: ekmanr@ajpo. sei. cmu. edu
IBM/SAIC Repository: stars: :ekmanb

Appendix A. Revised TPP 14



SOFTWARE TECHNOLOGY FOR
ADAPTABLE, RELIABLE SYSTEMS

(STARS) TECHNICAL PROGRAM
PLAN

Document Number STARS TPP

17 MARCH 1989

STARS Joint Programn Office
Defense Advanced Research Projects Agency (DARPA)

Rosslyn, VA 22209



Preface
Software Technology for Adaptable, Reliable Systems, or STARS, is the Defense Department's
program to achieve dramatic improvements in software quality and to raitigate runaway software
costs. This technical plan was originally prepared by the STARS program director on 6 August
1986, and approved by the STARS Executive Committee. The plan was revised 17 March 1989
with program updates and technical refinement. An IRI next to the section header is used to denote
an added or substantially revised section.

The STARS Charter [1] signed by the Under Secretary of Defense for Research and Engineering
(USDRE) on 1 November 1984, the Deputy Secretary of Defense program clarification memoran-
dum 12], signed on 12 August 1985, and the requirements document prepared by the Services 131
provide the approved high level statements of STARS program requirements, objectives and ap-
proach. The technical guidance from references I and 2 is presented next in outline form to sum-
marize the approved basis for this STARS technical plan.

" REQUIREMENTS

U Future weapon systems require:
" Adaptability and reliability.
" New and enhanced capabilities.
" Significant quantities of software.

N Software cost projections require:
A Unusual efforts to mitigate rising costs.

* OBJEC'x ,VE

a Long term savings and reliability benefits.
a Major advances in the software engineering process.
0 Dramatic improvements in:

" Software engineering productivity.
" Software quality and reliability.
A Time and cost of Defense software.

a Transition of new processes into use.

* APPROACH

" Apply sufficient resources in a concentrated R&D effort.
" Exploit new software and systems opportunities for:

" Commonality.
" Standardization.
" Portability.
" Reusability.

" Use a focused management approach.
" Assign Service and Defense Agency organizations responsibility for technical direction and

contract management.
" Develop major products under competitive industry contracts.

This technical plan unifies and focuses the STARS program by emphasizing the use of Ada and
related software engineering technology, introducing the software-first systems acquisition ap-
proach, and establishing a strong industry leadership role in STARS technology development.

Specifically, STARS will:

Preface ii



Develop and demonstrate a software-first technology with special emphasis on adaptability to
reduce software costs and reliability to improve software quality. The current "waterfall"
method is not sufficient to produce the productivity improvements that the STARS program
has as an objective. This development of a new software life cycle will have far reaching im-
plicauo. in the development and acquisition of Mission Critical Computer Resources
(MCCR) systems.

* Develop and support an adaptable software technology through several initiatives:

" Develop a significant foundation of reusable Ada software for MCCR mission applica-
tions and software engineering support.

" Unify a set of commercial functional interface standards "i Ada as a basis for software
component compatibility, adaptability and reuse.

" Provide a MILNET-accessible repository with appropriate access controls to support
software reuse. Because STARS will seek to demonstrate and support software reusability
opportunities to reduce mission application software costs, the repository will include a
significant quantity of mission application software that can be used to evaluate and ad-
vance software development approaches for reusable software.

* Develop and demonstrate a reliable software teclnology through several initiatives:

" Develop and demonstrate computer aided tools to automate and unify software system
definition, specification, design, coding, testing, maintenance and documentation, and to
provide software life cycle configuration control over all aspects of the software process.
Validation capabilities will be included.

" Demonstrate the feasibility of extending the mechanisms used by Ada compiler builders
in linking Ada package specifications and package bodies to provide comparable processes
for assuring completeness and consistence between other phases of the life cycle process.

* Contribute to the development of formal verification methods and supporting tools for
MCCR systems developed in Ada.

* Pioneer and demonstrate a new way to treat high-risk software issues in MCCR system ac-
quisition.

* Deliver several prototype automated software engineering environments that ultimately be-
come fully ),perational environments that run as distributed applications over networked het-
erogeneous hardware, exploit standard virtual interfaces, provide an object-oriented view to
developers, provide configuration control of developed software, and support a design-by-
successive-refinement software-first strategy.

" Demonstrate emerging STARS technology by sponsoring shadow projects with Service Sys-
tems Program Offices Shadow projects are implementations of operational mission software
using emerging STARS technology. Ihese projects will be conducted in parallel on a non-
interference basis with active system development efforts by selected System Prograr Offices
of the Services. Shadow projects will provide a pragmatic assessment of STARS progress and
will help transition STARS technology into MCCR programs.

Written line-in, Ine-out comments with rationale are invited and should be forwarded to thc Di-
rector of the STARS Joint Program Office, Defense .Advanced Research Projects Agency,
DARPAIDMO, 1400 Wilson Blvd., Rosslyn, VA 22209.

Preface iii



Submitted:

Joseph S. Greene, Jr.
Colonel, USAF
Director, STARS

Preface ly



Table of Contents
SECTION 1 - BACKGROUND ............................................. I
1.1 Software Enginecring Criticality ........................................... 1
1.2 Scope of the STARS Program ........................................... 1
1.3 Stars Funding [R] ..................................................... 2

SECTION 2 - OBJECTIVE ................................................ 3
2.1 Defense Systems of the Nineties .......................................... 3
2.2 Capabilities Needed ................................................... 3

SECTION 3 - TECHNICAL STRATEGY ..................................... 5
3.1 Leverage Approach [R] ............................................... 5
3.2 Productivity Improving Opportunities [R] ................................... 5

3.2.1 Ada - The Language of Choice JR] ..................................... 6
3.2.2 Labor Saving Tools [R] ............................................. 6
3.2.3 Software Reuse [R] ................................................. 7

3.3 Software-First Processes [R] ............................................. 8
3.4 Standardization Support ............................................... 10
3.5 Relationships to Other Programs ......................................... 11
3.6 Changes to the STARS Program [R] ...................................... 11

SECTION 4 - TECHNICAL PROGRAM ..................................... 13
4.1 Program Structure ................................................... 13
4.2 Shadow Demonstrations [R] ............................................ 13
4.3 Product Development ............................................... 14

4.3.1 Technology Integration ............................................. 15
4.3.2 MCCR Software Engineering Environments ............................. 15

4.3.2.1 Fram eworks JR] ............................................... 15
4.3.2.2 Software Process Control [RI ..................................... 16
4.3.2.3 D atabase (R ] ................................................. 16

4.4 Technology Development .............................................. 16
4.4.1 Adaptable Software Technology ...................................... 17

4.4.1.1 Foundation Ada Capabilities ...................................... 17
4.4.1.2 Standards .................................................... 18
4.4.1.3 R epository ................................................... 19
4.4.1.4 Design by Successive Refinement .................................. 20

4.4.2 Reliable Software Technology ........................................ 20
4.4.2.1 Computer Aided M ethods ....................................... 20
4.4.2.2 Dom ain Integration ............................................ 20
4.4.2.3 Form al M ethods .............................................. 21

4.5 Breakthrough Initiatives [R] ............................................ 21

SECTION 5 - TECHNICAL GUIDANCE [R] .................................. 23

SECTION 6 - PRODUCTS AND MILESTONES .............................. 25
6.1 Shadow M CCR Systems [R] ............................................ 25
6.2 Software Development Environments [R] .................................. 25
6.3 Technclogy Development [R] ........................................... 25
6.4 Fundamental Research [RI ............................................. 26

Table of Contents v



SECTION 7 - REFERENCES............................................ 27

SECTIONS8- ACRONYMS IRI ........................................... 29

Appendix A. FOUNDATION PROGRAM...................................31
A. 1 General Fragment Capabilities ......................................... 31

A.1. 1 Command Languages............................................ 31
A. 1.2 Document/Text Preparation ........................................ 32
A. 1.3 Database Support............................................... 32
A.l1.4 Operating System Fragments....................................... 33
A.1.5 Graphics Support............................................... 33
A. 1.6 Network Sulpport............................................... 34

A.2 Automated Environment Fragment Capabilities.............................34
A.2. 1 Design Description and Analysis.....................................34

A.3 Foundation Deliveries [R]............... I.............................34

Appendix B. SHADOW PROJECTS [RI ..................................... 36

Appendix C. PRIME CONTRACTORS 111RI .............................. 37
B. 1 Consolidated Plan [ RI ............................................... 37
B.2 First Increment Deliveries [R]I..........................................37

Trablc of Contents Vi



II

SECTION 1 - BACKGROUND
Tis document is the top-level technical program plan for the STARS program. It describes the
objectives of the program, the technicalH approach to achieve the objectives, the products to be de-
livered, and the product milestones and funding requirements. The requirements and needs which
drive the program may be found in the STARS program requirements document 13]. Program
management is described in a separate management plan 14].

1.1 Software Engineering Criticality
DoD's weapon and warfare support systems depend on Mission Critical Computer Resources
(MCCR) not just for their initial operational capability, but also to provide the capability to re-
spond to changing operational threats and employment doctrine. Future national security will re-
quire new and enhanced high-technology weapons, command control and intelligence gathering
systems that will depend on significant quantities of software. Without fundamental change to the
software engineering process, DoD's annual expenditures for MCCR are projected to increase from
approximately $3 billion in 1980 to $11 billion in 1985 and then up to over $30 billion in 1990
(51. Only a 20 percent increase in software productivity by 1990 would equate to cost saving suffi-
cient to buy a new ship for the Navy, 15 new fighter aircraft for the Air Force and a tank battalion
for the Army every year. We should be able to do considerably better than 20 percent just by using
Ada software engineering and institutionalizing software reuse. Today, however, software devel-
opment and maintenance ability is the critical-path activity limiting progress in many DoD MCCR
programs, from affordability, risk management and capability points of view.

Not only will future systems require more software at a higher aggregate cost, but the software will
be responsible for providing more and more of the functionality in weapon systems. Much of the
growth in the power and sophistication of U.S. weapon and warfare support systems has been due
to the extensive application of computers, particularly hardware technology. Software productivity
increases have simply been inadequate to meet the growing complexity and size of military systems.
As a result, software problems continue to grow more serious. Sympt,.rns of these problems are
seen in slippages in weapon system development schedules, operational system failures, weapon
system inability to meet changing requirements, and soaring life cycle costs 13, 6, and 71. The
Software Technology for Adaptable, Reliable Systems program, called STARS, is the DoD's pro-
gram to achieve dramatic improvements in software quality and to mitigate runaway software costs.

1.2 Scope of the STARS Program
With planning initiated in Calendar Year (CY) 1981 and continuing through Fiscal Year (FY) 1983,
the STARS program experienced a slow and ambiguous start. In FY 1986, following major reviews
18, 91 STARS was redirected (See Section 3.6) and challenged to find and demonstrate ways to
significantly reduce MCCR system software costs by CY 1991. New technical and management
approaches were formulated to achieve major productivity enhancement. The new STARS tech-
nical approach will focus on use and extension of the Ada software engineering opportunities. The
STARS management approach will exploit industry leadership in software research. Laboratones
of the Militar) Departments will have a stronger role. STARS work will Lmphasize full and open
competition continuing through the life of the program. STARS will foster the needed technology
by funding research and development, integrating the contributions of man) industry organizations
and making those results conveniently available to the U.S. software industry. A research thrust

SECTION I - 13ACKGROUND I



is required because the ability to produce such a software engineering approach does not now exist.
However, DoD software initiatives over the past fifteen years support the feasibility of the planned
software-first thrust with high expectation of significant near-term results.

STARS cannot solve the DoD's software problems by itself. The STARS program must be built
upon active DoD programs and must leverage the commercial and industrial base. Tight coupling
exists between STARS and teclnology-based programs within the DoD and other Government
Agencies. These include the introduction and maintenance of the Ada computer programming
language by the Ada Joint Program Office, the efforts of the Joint Logistics Commanders (JLCs)
to improve software acquisition practices, the establishment of the Software Engineering Institute
(SEI), the establishment of life cycle software engineering support centers by the Services, and the
strategic computing initiatives by the Defense Advanced Research Projects Agency (DARPA).

1.3 Stars Funding [R]
During the maturing process of the STARS program, the technical plans have been defined incre-
mentally, with multiple objectives and directions. These plans have permitted the funding to be
adjusted to meet the current plan. The current funding profile for the STARS program is defined
in the STARS Program Management Plan 14J.

SECTION 1 - BACKGROUND 2



SECTION 2 - OBJECTIVE
The objective of the STARS program is to achieve a dramatic improvement in our ability to pro-
vide and support software meeting mission critical defense requirements. This improvement will
be reflected in the cost, schedule, and quality of MCCR software. The program will seek major
improvements by the early 1990s.

2.1 Defense Systems of the Nineties
The STARS Technical Program Plan and implementation strategy have been developed based on
a vision of the computing requirements for defense systems in the 1990's 16, 7]. By 1990, new
mission-critical defense systems will exhibit the following characteristics:

* MCCR embedded in weapon systems will make routine use of multi-processors and networked
or parallel architectures. Similarly, Command and Control systems will be based almost ex-
clusively on distributed processing architectures.

* Data bases used by the commander will be distributed. Extensive use of computer networks
rather than hierarchical structures will be used.

* The processing power of the computers used in defense systems will be increased by at least
an order of magnitude. If the size and complexity of software grow at the same rate, the point
will be reached beyond % hich continued implementation of software systems by past methods
may become impractical.

* The amount of on-line computer-managed data will vastly increase. The automated systems
supporting the commander must often sort through and reduce myriads of data to locate and
present only the critical elements of information.

* The costs of the computer hardware used for software development and used in system ac-
quisition and deployment will continue to decrease. The cost to develop and maintain soft-
ware will be a principal factor affecting MCCR weapon system affordability and capability.

The STARS strategy contained in this plan responds to these critical factors affecting weapons
system technology. The maturation of software technologies permitting the use of distributed
computer networks, real time processing with multiprocessors, information protection for high in-
tegrity and trusted systems, and cost effective software generation concepts are topics of high in-
terest.

2.2 Capabilities Needed

The capabilities needed to answer the software challenges outlined above are aimed at positioning
the DoD as an effective bu)er of softA are, ensuring the availability of softw are support s)stems that
are adaptable to each project, providing for the easy and trusted reuse of existing software, intro-
ducing a Nariety of rapid and cost effective softare production and support techniques, and as-
sessing and reducing the risks inherent in the de elopment of new software systems. These
capabilities include methods, techniques, and tools to:

SECTION 2 - OBJECTIVE 3



* Improve the software creation and evolutionary support processes with software-first design,
specification and documentation methods.

* Reduce the cost of software development through the development and application of acces-
sible, trusted, reusable software components.

* Provide for routine use of automation in the software creation and evolutionary support
process.

* Reduce the risks inherent in the development of mission critical software by applying appro-
priate software standards and procedures.

* Demonstrate the transition of new technology to practice on DoD MCCR systems and use the
feedback from lessons learned to refine the technology.

SECTION 2 - OBJECTIVE 4



SECTION 3 - TECHNICAL STRATEGY
Severe software problems are not unique to a single Service or Defense Agency. Similar software
problems have been experienced by every Defense Department component. These common
problems deserve a common solution. The STARS.program will concentrate resources to develop
and make available solutions to support the entire DoD.

The STARS program will not supplant existing programs in the area of software engineering.
Rather, STARS will supplement other efforts with a focused and compatible program. Related
Service and Agency software programs must continue as they directly complement STARS in the
near term and, in the long term, will provide the follow-on and continuity. The thrust of STARS
is to develop and productize software solutions to be used by the defense industrial base. STARS
will be successful when the software technology base supporting DoD contractors and the DoD
has been raised and the process of maintaining and further improving that technology base has been
commercialized by industry.

3.1 Leverage Approach [R]
The DoD requires quality products to support efforts to develop and maintain operational MCCR
systems. "Quality products" mea-ns that the tools and procedures are not only feasible and appli-
cable, but acceptable for use (i.e., cost-effective, adaptable, reliable, maintainable, and reusable).
Sometimes the term "production quality" is used to describe these attributes.

There is an important distinction between promoting technology and commercialization of software
support systems that meet the varied and specific needs of the DoD. The STARS approach ad-
dresses several facets of the software problem: basic technology, engineering the technology into
products, and technology insertion. The people and the organizations who develop and maintain
DoD systems have also been considered because products alone fall short as a total solution.

Technology transition and insertion do not occur naturally. Although Defense MCCR systems are
built by the U.S. weapon systems industry, the defense market alone is not sufficient to stimulate
the needed change. We must foster change that creates competitive advantage for industry in the
commercial sector as well. For this reason, the STARS program has bech focused to provide U.S.
industry a leadership role in improving the defense software development process. The STARS
strategy includes explicit linkages to commercial opportunities through emphasis on commercial
and government software standards.

The STARS strategy extends deeply into the DoD system acquisition process. The focus will be
on continuous relationships between the user community and the development organizations, to
produce an end product that meets the needs of the users. Elimination of ineffective development
steps and documentation will help motivate the industry to use STARS defined procedures and
increase overall quality. New definitions of data rights and contractual obligations will further
motivate industry in the direction of improved productivity.

3.2 Productivity Improving Opportunities [R]
STARS will develop and demonstrate ways to significantl increase software productivity over the
next 5 years. The DoD will need major increases in software productivity, compared with today's
baseline, to get affordability and capability improvements at the same time. A high, near-term

SECTION 3 - TECIINICAL STRATEGY 5



productivity objective also serves as a convenient criterion against which to evaluate the potential
contributions of candidate projects and with which to focus the STARS program.

STARS will seek major and early productivity achievements by exploiting opportunities from se-
veral different sources. These are: the software development language, the development tools and
environments, and software reuse technology. There is a strong relationship between these oppor-
tunities, and the STARS program will provide a coordinated approach to realizing the productivity
improvements.

Concurrent advances along these dimensions will yield a compound productivity improvement that
is significant, well understood, and easily observable in terms of total cost and elapsed time. There
is no need or plan for detailed measurements for each STARS program element.

3.2.1 Ada - The Language of Choice JR]

The Ada language provides powerful features that contribute to new levels of productivity in the
design, programming and maintenance phases. Although the language is only now beginning to
get wide use, reviews [I10, 11] of early Ada products provide encouraging evidence that Ada will
achieve the productivity improvement sought by the Ada language designers. These results have
been achieved generally by people without prior Ada experience using early compilers on conven-
tional machines, so even greater improvement factors are reasonable to expect.

Ada provides an integrated collection of powerful, advanced features (typing, encapsulation, gener-
ics, exception handling, tasking, packages, specifications, etc.) selected for the development and
maintenance of the software typically found in MCCR systems. Ada provides a well controlled,
standard language that permits high degree of source-level portability between validated compilers
and provides opportunities to isolate machine and operating system dependencies to achieve a high
degree of machine independence.

The Ada language brings with it several technologies that reduce the cost of implementing software.
Beyond the clear impact of software reuse, Ada supports many design techniques that reduce the
risks of software development. Comparison of Ada code to previous versions in other languages
has provided evidence for expecting programs written in Ada to be smaller than the same function
in another language 1121.

The goals of the STARS program -- increased productivity and increased MCCR software quality
-- were fundamental to the design goals of the Ada language. Thus it is natural that the STARS
program capitalize on the base provided by Ada activities. Ada can be used to capture the results
of the STARS program and share them through6ut the DoD software community. Ada will pro-
vide a common medium through which different software technology advancements can be con-
solidated and focused on the problem of increasing the productivity of the MCCR software
production process and the quality of the resulting MCCR software.

3.2.2 Labor Saving Tools [R]

The software community has recognized the opportunity to increase productivity by capitalizing the
programming force with tools and special architecture software development machines. The pro-
grammer support capability possible for a given cost has increased steadily over the years and is
predicted to continue to increase [13].

In the labor saving area of opportunity, repository technology to facilitate sharing, transfer and
control of software during development, maintenance and reuse will also be developed.

Efforts to reduce the overhead of documentation and project management will also be undertaken,
but are not expected to provide comparable productivity contributions. Much more powerful op-
portunities seem to lie in the direction of changing the software engineering process so that these
former, human-intensive, paper driven controls are no longer required.

SEc'rION 3 - TECHNICAL STRATEGY 6



3.2.3 Software Reuse [R]

Software engineers have long recognized that reusing, rather than rebuilding, would be a powerful
software approach with significant cost-benefit opportunities [ 141. Unfortunately, the comrnon past
practice of using many different languages and language versions, and efforts to increase perform-
ance through use of machine and operating system dependent feature!, have generally discouraged
widespread reuse. Given the past softwarc base, reinvention has generally been cheaper than reuse.
The Ada language with a consistent application of design and coding practices that improve read-
ability, isolate machine and operating system dependencies, and encourage Ada source-level porta-
bility should provide a major new opportunity for mission application software reuse. STARS will
seek to develop a sizable amount of software in ways that will encourage and foster reuse.

Reusability opportunities will be exploited by STARS at several levels. As a first step, having a
large quantity of softw are covering many different application domains in a common language, with
clearly isolated and well documented treatment of machine and operating system dependencies
would provide a new opportunity to exploit reusability. As a second step, unification of functional
interface standards would introduce additional opportunities for reuse. For example, subsystem
components could be more easily separated for reuse. Also, a new and more specific taxonomy
of software could be developed to facilitate description, cataloging and retrieval of software com-
ponents. Automated tools to reconstruct (to the extent possible) requirements level, functional-
level and specification-level descriptions by processing source, object, and command language code
would further facilitate reuse. At another level, approaches that would reuse trusted subsystems
components, their designs and specifications, and their formal proofs need to be explored. There
are then several different opportunities for reuse by the software engineer at subsystem, component,
package, and subpackage granularities. STARS will exploit reuse at all levels that provide cost-
benefit returns.

This strategic objective may be referred to as institutionalizing the reuse of software parts. To
achieve it, the STARS program will remove the inhibitors to reuse. These inhibitors are summa-
rized in Table 3-1.

d

SECTIION 3 -T'IECHINICAL STRATEGY 7



INHIBITOR STARS SOLUTION

LANGUAGE
Non-portable programming languages Ada

achine-independet programming
Portability guidelines

INTERFACES
Non-standard interfaces between Commercial interface standards
parts Application blueprints

DEVELOPMENT PROCESS
Specification-driven process Prototype-driven process by
providing poor user feedback user feedback

System Architect Organization
Chief Programmer Team

SOFTWARE PARTS
Unavailability of parts High-function parts library

Search/retrieval methods
Parts

TOOLS
Reuse tools unavailable Tools for:

Parts generalization
Parts evaluation
Parts customization
System tradeoff analysis

ACQUISITION METHODS
Discourage reuse of software Recommendations for changes to
parts acquisition process

Table 3-1: Inhibitors to Software Reuse

3.3 Software-First Processes [R]
Traditional system acquisition processes within the Department of Defense (DoD) have tended to
emphasize hardware over software. Hardware has always been part of systems acquisition whereas
software has only recently gained a position of prominence. As a result, acquisition processes have
been developed, and evolved, with hardware primarily in mind. Software has too often been viewed
as an "add-on" to be acquired after the hardware is specified or obtained, despite that computing
hardware is a steadily declining portion of system costs.

The acquisition process has been further complicated by a common practice of considering hard-
ware to include a run-time support system upon which application-dependent software must exe-
cute. In keeping with the hardware first nature of traditional ac.quisition processes, the run-time
support system is usually specified, and sometimes fully acquired, before the application-related
software issues are addressed.

High levels of software cost reduction are believed possible by addressing software first, rather than
hardware, in the acquisition of automated MCCR systems. Considering software-first can lead to
a much richer set of possibilities for software reuse. Software-first can provide more extensive and
easier determination of user requirements before the constraints imposed b. the hardware compli-
cate the problem. Considering softwarc-first will also allow the early determination of the soft-
ware's general structure and will therefore help specify hardware facilities (such as distribution,
parallelism, etc.) needed to achieve desired performance levels.

The STARS program will promote processes that support a software-first appioach to systems
acquisition. The processes are characterized by the following attributes that:

SECTION 3 - TECHNICAL STRATEGY 8



• Provides for early and frequent reassessment of requirements, by end users. This attribute
implies a prototype driven process which is directed by user evaluation and feedback.

* Allows and encourages the use of prototyping for requirements formulation, decision explora-
tion, and system evolution.

* Promotes prototyping and development of alternative solutions, which will build a repository
of potential solution components. The repository will also contain reused components from
other projects.

* Emphasizes assembling systems by selection from alternatives rather than by construction from
scratch. The assemblage will follow application "blueprints" which are agreed upon early in
the acquisition process.

* Provides a "bi-modal" process by which a system can be developed through the free inter-
mixture of bottom-up and top-down processes..

* Freezes final requirements after most of the software has been developed.

* Provides supporting tools to compose new systems from reusable software and to construct
capability from existing code.

* Incorporates both formal and computer aided analyses.

• Delays final selection of the operational hardware after most of the software has been devel-
oped, and concurrent with the integration of the system.

Processes with these characteristics are fundamentally different from current requirements-driven
software processes that lead to the development of overly detailed specifications before the funda-
mental problems concerning a software system are identified and understood.

Software-first processes rejuire that the implementation language be machine-independent. This,
in turn, requires a strict and enforceable control of the language definitions and implementation.
The DoD common high order language, Ada, defined by the Ada language standard [15] and con-
trolled through the compiler validation facility, is the most uniformly implemented language ever
produced. Ada provides the best opportunity to support a software-first technology today.

The STARS program will emphasize use of an adaptable (reusable) software technology process
to replace the present life cycle software model. Initial efforts will be compared with the life cycle
phases defined by traditional "waterfall" models such as MIL-STD-2167 [16]. Attention will,
however, be given to an Ada-focused alternative model supporting an evolutionary development
process. The STARS approach will make maximum use of Ada for specification, design, imple-
mentation, execution, and evaluation of MCCR software. Support tools will also be implemented
in and for Ada.

Figure 3-1 present a graphic example of a software-first life cycle.

SECTI ON 3 - TECI INICAL STRATEGY 9



SYSTEM DEVELOPMENT
Frozen
Ha rdkare

Develop Build Evaluate L Productize

1> Unique -> Prototype > System -> System
Components > System>

Frozen

Requirements
Comllponent

Repository

Co~~ts > Cstoize Evaluate Product ize

Design Components >Components -
Altern-
atives

Develop
Prototype
Components

Break-
through

Solutions COMPONENT DEVELOPMENT

Figure 3-1: Software-First Life Cycle

3.4 Standardization Support

The problems of software portability and communication within and across computing architec-
tures have existed in the information processing community from the beginning. Industry and
government have developed a comprehensive suite of over 1,000 standards that address software
related issues 1171. Employment of technically and functionally appropriate standards has several
benefits. First, standards allow the establishment of consistent functional interfaces that support
well-layered design and development of components. Second, standards facilitate the reuse of
properly designed software components across application domains. Finally, standards capture the
fruits of an extensive engineering effort already undertaken by industry and government, thus
avoiding replication and re-invention.

STARS will therefore foster the use and development of government and commercial information
processing standards as an impoltant part of the STARS piugiun. The goal of the STARS initi-
ati e will be to unify a consistent set of standards through bindings and implementations in and for
Ada. The fact that STARS will encourage company sponsorship of STARS funded efforts before
accredited commercial standards bodies is a key aspect of the STARS leverage strategy for in
stimulating commercialization of STARS initiatives and fostering a new private sector markets for
the software industry.

SECTION 3 - TECHNICAL STRATEGY 10



3.5 Relationships to Other Programs
Since the initial definition of the STARS program in 1983, several other programs in software have
started within and outside the Government. Collectively, they provide a context for consolidating
STARS program efforts. The Software Engineering Institute (SEI) has the role of transitioning
advanced software technology into widespread practice within the DoD software community. The
Defense Advanced Research Projects Agency (DARPA) has developed plans for rapidly capitaliz-
ing on advanced software technology at the edge of the current technology horizon. Several pro-
grams such as the Ada Joint Program Office (AJPO), World Wide Military Command and Control
System modernization (WIS) and the Strategic Defense Initiative (SDI) seek to capitalize upon
more well-developed technology to achieve immediate gains.

The STARS program will coordinate and integrate STARS activities with those of other programs.
The coordination and integration with respect to the Service programs, in particular, are defined in
the STARS program Management Plan 141. STARS program activities will fll the gap between the
immediate results achieved within the Service programs and the long-term results hoped for through
other DoD programs. The bulk of STARS activities will be oriented towards medium-term results
that will deliver a significant productivity increase.

Coordination and integration with SEI will result in the de-emphasis of transition activities within
the STARS program. The initial plans for STARS assume that the task of transitioning new
technology developed by STARS will be handled by the SEI. The STARS program, however, will
retain activities called shadow demonstrations to assess the value of STARS technology in real-
world situations. A secondary intent of shadow demonstrations will be to provide guidance for
STARS program planning and execution. The data collected through demonstration will provide
a pragmatic measure of the program's progress and also help identify high-payoff directions from
among alternative activities.

3.6 Changes to the STARS Program [R]
In FY 1986, following major program reviews, the STARS program was redirected. The revised
program concepts, while consistent with the long-standing goals of the STARS program, repres-
ented a significant restructuring and focusing of the technology and management approach. Prior
to the restructuring of the FY 1986 program, STARS documents described the program in terms
of eight different technology areas 1181. The previous Applications Specific and Measurements areas
were combined and replaced with a new emphasis on shadowing selected, real, mission-critical
system developments to provide STARS technology demonstrations. Shadow projects were de-
fined as STARS-funded initiatives to develop operational-quality MCCR products by applying the
Ada-based STARS development processes to real, DoD mission critical systems. The former
STARS program technology areas called Systems, Methodology, Automated Environments and
Man-machine Interface were replaced by a single, focused, software-first technology development
thrust. The former Business Practices and lumai Resources areas were not funded by STARS
and were referred to the Services and the SEI as technology transition activities.

Prior STARS efforts to automate the current state-of-the-art as represented by the Software Engi-
neering Environment (SEE) efforts were referred to the Services as commendable efforts, but inap-
propriate for STARS funding because they represent a technology approach insufficient to achieve
STARS productivity goals. Service cost estimates of the STARS-SEE preliminary design also made
the SEE unaffordable within the STARS program as previously planned. As discussed in Sections
4.3.1 and 4.3.2, STARS will include environment development activities, but they will differ in two
important ways from previously planned efforts. First, the STARS environments will support a
new software engineering approach. Second they %% ill be developed themselves using that approach.
This plan assumes that the change will allow the development of several environments for less cost
then previously estimated.

Since FY 1986, twenty-five STARS foundation tasks have been completed, five shadow projects
have been supported, and three prime contractors were selected. These program elements have
followed the management and technical plans as established in 1986.

In FY 1989, there is significant potential for major program changes due to the followving issues.

SECTION 3 - TECHNICAL STRATEGY II



* The STARS program office was transferred to DARPA in 1988.

• Funding for the program is being adjusted to meet the realities of the current DoD environ-
ment.

The initial increment of the prime contractors was completed in 1989, and ideas expressed in
the deliverables will be incorporated into the program.

There are technology areas that will not be addressed by the STARS program. Research in very
high level languages, knowledge-based systems, artificial intelligence, 5th generation languages,
non-Von Neumann architectures, logic programming and symbolic evaluation will not be funded
by STARS. Proposals for work in these areas will be referred to DARPA and the services' 6.1 and
6,2 research programs. These advanced concepts, while potentially very promising, are not judged
likely to meet the STARS delivery schedule.

SECTION 3 - TECHNICAL STRATEGY 12



SECTION 4- TECHNICAL PROGRAM
The STARS program is a software engineering teclmology de~clopment program. The program
builds on the 15-year foundation of Defense Department initiatives that began in the early 1970's
following publication of a major Air Force study .[19] that identified software costs as a major
problem for mission-critical systems. In particular, STARS will build on the Ada computer lan-
guage and related software engineering processes.

4.1 Program Structure
To capture the opportunities of the Department of Defense Ada software engineering initiative, the
STARS program is structured with four fundamental and related thrusts:

1. The success of the STARS-developed software engineering process will be measured prag-
matically through "shadow" projects that develop real operational mission critical applications
in Ada.

2. Software engineering environment development will focus on a software-first approach to sys-
tem acquisition.

3. The technology development thrust will focus on adaptable and reliable software engineering
approaches.

4. To solve fundamental research issues, STARS will pioneer an approach to risk reduction ap-
plicable to software-intensive mission critical systems. A software repository will be main-
tained to facilitate sharing of reusable software.

Each of these thrusts will be described in greater detail in the following subsections. The STARS
program is based on industry leadership through a few lead contracts and includes participation of
Service Laboratories in research areas and Service Product Divisions in shadow projects.

4.2 Shadow Demonstrations [R]
Shadow demonstrations, using the discipline and processes developed by STARS, will be selected
from weapons, command and control, and intelligence areas to provide representative demon-
strations for each Service. Shadow projects will provide a pragmatic measure of the STARS pro-
gram progress in developing and introducing a new software engineering approach, provide realistic
and useful feedback to the technology developers, and cont.,bute to the process of technology in-
sertion. The "should-cost" goals for shadow developments will be set by the STARS Director and
reduced over the program years to eventually demonstrate the productivity improvement sought.
Shadow activities serve to demonstrate the feasibility and value of using STARS-developed software
technolog) on real defense systems software projects. The tools and techniques underlying these
demonstrations will be developed as part of the STARS technology development activities. The
focus is on the actual demonstrations themselves.

Reusable end-application softkare system components will be developed in support of these dem-
onstration actiities. The development of these components will therefore be driven and their de-
fmition will stem from actual projects. Coordination by mission needs among the various

SECTION 4 - TECHNICAL PROGRAM 13



shadowing projects will result in the identific generic components usable over a variety of
projects and application areas.

Most candidates for shadow activities will be b, ted from system programs nominated by the
Services and DoD agencies The actual programs to be shadowed will be selected in coordination
with the STARS Director, the Servicc or Agency, the System Project Office Director, and industry
contractor involved. STARS will fund the shadow projects.

The following criteria are a few of those that will be used to select STARS Shadow demonstration
projects. The program should:

* Be in the weapons, command and control or intelligence area.

* Provide potential for software reuse.

* Use a traditional software acquisition approach with a no,,-Ada implementation.

Ilave a projected size of 100K lines of code or more for the non-Ada implementation.

* Commit to demonstrate a STARS-developed software technology.

* Permit portions of the Ada shadow application software to be placed in a STARS repository
under appropriate access controls.

4.3 Product Development
Powerful market forces are at play. The sweeping introduction of the personal computer, the mass
production of low-cost and pow:i1,ul commodity software and the emergence of third-party soft-
ware marketing organizations have changed the computer business in wa s to k hich no organiza-
tion is immune. We cannot predict the timing, the basis, or the extent of simila. forces in the future.
We can predict that such phenomena will occur.

In picking a marketplace strategy for a program like STARS there are several dangers. Bucking the
tide can be very costly. At the same time, locking in on yesterday's force can miss the next big
opportunity. For example, were STARS to lock on to today's powerful commodity software
market force as the key to tomorrow's success, STARS could miss the next fundamental new
market force. If, for example, the industry provided the ability to adapt software to the unique re-
quirements of each using organization in near real-time to give that organization a competitive edge,
a new market with a service orientation could be added to today's commodity oriented market.
Adaptability, in fact, is the capability that MCCR mission critical DoD systems need; and, there-
fore, is the marketplace change that STARS seeks to foster.

The STARS market strategy will include the development of many new products. The products
that STARS will develop, while intended to be usable and useful in their own right, are intended
more fundamentally to be adaptable and reusable. The STARS product is not the end, but rather
the means by which a new process of software engineering will be developed, demonstrated and
explained. The STARS process will open new markets and new opportunities for
commercialization. That commercialization may be a very different service oriented opportunity
that goes beyond the capabilities that are possible solely in a product oriented commodity market.

STARS product development will be done in a way that seeks to take the early cost risk out of a
new process, but allows maximum opportunit) for industry to extend their efforts. Widespread
sharing of the results of work funded by STARS is essential as the catalyst by which a new adapt-
able technology process will be developed, understood and extended by industry.

The STARS process-oriented and service-based marketplace strategy underlies the choice of prin-
ciples (Section 4.3.2) and technical guidance (Section 5). The principles and guidance as presented
are not final, but should provide a strong signal to the technical reader that something different is
going on in STARS. STARS seeks to provide cost leverage in mission application software. The
approach should also provide cost leverage in development of the support emironments. The
program includes the use and demonstration of the new processes in both domains.

SECTION 4 - TECilNICAL PROGRAM 14



r -

4.3.1 Technology Integration

The STARS lead contractors [4] will each be responsible for integrating the results of research and
technology development efforts (described in Sections 4.4 and 4.5) to produce software engineering
support environments specialized for a particular application domain. Each environment should
make maximum reuse of common Ada foundation capabilities (described in Sections 4.4.1.1). The
responsibility to deliver these softwkare engineering environments is intended to provide the lead
contractors a practical focus for their research and technology oversight responsibilities. The soft-
ware engineering environments are intended to be a demonstration of the software-first software
engineering approach they seek to support.

4.3.2 MCCR Software Engineering Environments

The STARS prime contractors will develop three prototype software engineering environments for
peer review and evaluation. These systems will be built using common, reusable Ada software
unified by a consistent set of functional interface standards to provide an adaptable framework for
interfacing tools and processes. A configuration control discipline will include tools for the pro-
tection of software at different levels of configuration control and for promotion between levels of
configuration control. The system will include documentation and specification approaches sup-
ported by computer aided processes. A significant and growing set of tools for reliability and
adaptability processes will be defined and under development.

B> the end of the prime contracts, three software engineering ev ironments will be delivered. These
will be adapted to the unique requirements of specific application domains. The design and inte-
gration approaches used in the development of these environments should demonstrate a new level
of adaptability based on a common, reusable software technology. The time and cost to develop
future environments adapted to the special needs of a particular application area should be
demonstratabl reduced over today's practice. These products are intended to be the processes by
which future application systems will be developed and maintained. The adaptable, reliable
softvare-first technology assures that the process is more important than the application product
at any time because the process provides the capability to respond on useful time scales to changing
threats.

4.3.2.1 Frameworks [RI

A fundamental aspect of a software engineering environment centers on the framewkork that such
an environment provides for supporting and interfacing the tools and capabilities NNithin the engi-
neering process. Several principles will be adopted as technical invariants to guide the software
engineering eiivironment developments. As invariant principles, the development environments
must:

* Use unmodified commercial operating systems.

, Use a validated .., compiler.

" Use Ada as a command language through a common command language interpreter.

* Use common command words consistent with Ada in new tools.

* Be machine independent down to a minimal set of well defined, low level interfaces, where
implementing bodies will respond to the specific environment.

* Interface to external facilities, when used, through standard interfaces for virtual terminal, net-
work, data base, graphics and file naming conventions.

* Be hostable on any system sufficient to host a production Ada compiler.

* Allow hosting multiple environments on the same hard" are v.ithout compromising informa-
tion or reporting to a central control.

SECTION 4 - TECH1NICAL PROGRAM 15



Assure that management tools impose no additional burden on the programmer or slow the
d ,velopment process.

Keep the environment overhead to not more than a factor of 2 over doing a like function with
a manufacturer's development environment.

Use existing, off-the-shelf software whenever possible, both within the environment itself and
in applications being developed under the control of the environment.

4.3.2.2 Software Process Control [R]

An automated control process capability with clear levels of control (such as development, test and
operation), and with a multi-level trusted promotion process will provide a fundamental contrib-
ution to software reliability. These capabilities must:

* Support the reuse of existing software by introduction of a reuse taxonomy and process ex-

tending from requirements to code and from code back to requirements.

" Provide a mechanism to search for and access reusable software components.

• Provide life cycle support of software and its associated documentation including multi-level
trusted configuration control of software and document versions.

" Use the Standard Generalized Mark-up Language (SGML) for all software documentation
preparation.

Be developed in an evolutionary manner, supporting extensibility of capabilities throughout
thae envirornent's life.

4.3.2.3 Database [R]

Library management, configuration management, and repository management require complex data
systems. To achieve the level of integration proposed in the environment, a major emphasis must
be devoted to centralizing these requirements in a logical structure. The database must:

* Build upon the underlying file system.
• Provide for the definition of object types and classes.

* Support the rel.ocation of information between geographically distributLd systems.

• Support outside data paths to allow relocation of information between distributed subsystems.

* Provide tools for protection of and promotion between configuration control levels.

* Use an abstract Ada data dictionary for integration.

• Support the registration of abstract document types that would be axailable over data com-
munication networks from a repository coupled with a generic editing capability specialized
by the registered type.

* Demonstrate access to a remote data dictionary that could be part of the repository system.

4.4 Technology Development
The Shadow activities discussed in the pre% ious sub-section provide direct support for moxing
modern software technology into the DoD softuare community. Improvements can be obtained
by developing and making available technology that is currently within the state of the art. Other
improvements require investigations into fundamental issues. The STARS program technology
development, productization and research acti% ities will provide future capabilities to be transferred

SECION 4 - TECHNICAL PROGRAM 16



* I

into practice. This section discusses STARS technology development efforts that focus on adapt-
able and reliable software techol- gies.

4.4.1 Adaptable Software Technology

The STARS program will seek an adaptable software technology by developing a critical mass of
foundation capabilities in machine-independent Ada as the core of a reusable technology.
Integrability and reusability will be enhanced through a strong focus on commercial standards (e.g.,
those of IEEE, ANSI, and ISO standards bodies) at the functional interface levels. A major thrust
will be undertaken to provide a trusted repository to describe, locate and access end-application and
tool software (within the constraints of export controls and security concerns). An Ada-based, bi-
modal technology for design-by-successive-refinement will be developed to support software reus-
ability concepts. Along with the process, there will be an emphasis on eliminating the overhead
burden of duplicative and often redundant documentation requirements.

4.4.1.1 Foundation Ada Capabilities

A prerequisite to an adaptable software engineering process is a critical mass of software that is
available, organized and structured with a view to adaptability. Because Ada is relatively new and
because widespread system development in Ada is just beginning, the oppo.tunity exists to achieve
considerable economies by focusing on the common software found in almost every system.
STARS will seek to develop such common soft%%are in a Na5 that facilitates and encourages reuse.
This common software, called foundation capabilities, includes work in areas such as:

* Command Languages
* Text Processing
* Graphics Protocols
• Operating System Capabilities
• Data Base Tools
* Network Protocols
* Planning and Optimization Aids
* Design and Analysis Tools

STARS will build on the efforts of many government contractors whosc Ada products have been
delivered to the Ada repository available on SIMTEL20 through MILNET. The following list re-
presents of some of the products that have already been delivered or are under contract.

• Symbolic Debugger
• Automatic Path Analyzer
* Metric Instrumentation
• Source Formatter
* Path Analyzer
* Statement Profile Report
* Complexity Measures Report
* Cross Reference Package
* Compilation Order Report
* PDL Processor
• Design Requirements Traceability
• Documentation Manager
* Automatic Specification Analysis
* Complexity Measurement Analysis
* Graphics I'DL Support
• Standards Checker
* General Management (Costing)
* General Management (Work Flow Control)
* Data Dictionary System
* Program Design Assistant
* Standards Support
• Documentation Reports

SECTION 4 -TECHNICAL PROGRAM 17



* Set, Package, and Subprogram Use Reports

Appendix A provides a brief summary of some of the foundation capabilities that were candidates
for development. The foundation work was undertaken concurrently with other STARS efforts.
For this reason, the work was competitively contracted prior to the selection and award of the
STARS lead contracts. These foundation capabilities will be subsequently modified (adapted) to
comply with function interface standards that are discussed in the next section.

4.4.1.2 Standards

Over 1000 standards have been identified 1171 that relate to software processes. STARS will seek
to unify a meaningful subset of these standards through Ada implementation and bindings. The
following list illustrates the kinds of standards that will be treated.

Programming

• Ada Programming Language
* Ada as a Common Command Language
* Ada as a Common Program Design Language
* Descriptive Intermediate Attribute Notation for Ada (DIANA)

Networks

" Internet Protocol (IP)
* Transmission Control Protocol (TCP)
" User Datagram Protocol (UDP)
* Teletype Network Protocol (TELNET)
* Internet Control Message Protocol (ICMP)
* Open Systems Interconnect (OSI)

Applications

* File Transfer Protocol (FTP)
* Trivial File Transfer Protocol (TFTP)
* Simple Mail Transfer Protocol (SMTP)
* Remote Procedure Protocol
* X-Windows

Text Processing

" Computer Language for the Interchange and Processing of Text (CLIPT)
* Standard Generalized Mark-up Language (SGML)
* Page Description Language
* Document Content and Interchange Protocols

Graphics

• Graphics Kernel Standard (GKS)
* North American Presentation Level Protocol Standard (NAPLPS)
* Programmer's Hierarchial Interchange Graphics Standard (PHIGS)
* Computer Graphics Metafile (CGM)

Database

* Common Ada Programming Support Environment (APSE) Interface Set (CATS)
* Structured Query Language (SQL)
* Information Resource Dictionary System (IRDS)
* Distributed Database Protocols
* File Server and Receiver Protocols

Operating Systems

• Portable Operating Systems (POSIX)

SECTION 4 - TECHNICAL PROGRAM 18



*1 I

Figure 4-1 illustrates the concept of how commercial interface standards might be used to build
generic system components. STARS will use commercial standards to foster such leverage through
reuse across functionally diverse applications.

User Process User
Layer Model Model

Tooling
Capability
Layer

Capabilities

Unifying
Layer Unifying Ada Viewpoint

r <_(

a Object
m Structure G SObject User Portability-
e Layer K X Q Manager Interface Interfacei
w L
0
r

k<_
Virtual
Layer Virtual Operating System

Host Native Operating System
Machine
Layer Hardware

Figure 4-1: Example of Functional Interface Standards

4.4.1.3 Repositoiy

STARS will maintain a high quality on-line, trusted, mandatory-access-controlled software reposi-
tory with continuously improving human interface capabilities. The repository will be used to
make available processes and the tools and tool collections supporting them. Software processes
supporting the creation and evolution of softwkare systems ,.an be used equally well to support the
development and maintenance of automated emironments or end-application systems. General
approaches and specific methods will be included in the repository so they can be accessed by the
STARS community.

Special attention will be given to processes supporting reusability. In particular, the repository will
hold processes, tools and tool collections needed to make use of the repository itself. The reposi-
tor will p~ovide ac,.ess to a %ariety of reusable software system fragments. Assistance will be
needed to identify the fragments pertinent ti a particular project, evaluations, adapt the chosen
fragment as necessary, and integrate them with other (new or reused) fragments. The repository
will, therefore, contain and provide access to the selection and assembly processes supporting the
use of elements in the repository for the development of automated environments and end-
application systems.

SECTION 4 - TECHNICAL IPROGRAM 19



4.4.1.4 Design by Successive Refinement

The package feature of the Ada language supports the separation of the design process from the
implementation process. The application of tools that automatically create package body stubs
from package specifications allow the Ada compiler to be used as a design tool for checking design
completeness and consistency. The capability introduces the opportunity for a process called design
by successive refinement in which compilable designs can be ever extended with additional capa-
bilities while simultaneously prk :ding a continuing check of completeness and consistency. This
concept applies equally well to functional decomposition and object oriented design.

The concept of design by rapid prototyping is a logical extension of iterative refinement process.
Prototyping, as a basic component of the software-first life cycle, is thus well suited for Ada soft-
ware development.

These capabilities need to be part of the standard design process. Additionally tools need to be
developed support the process beginning with existing code as well as requirements statements.

4.4.2 Reliable Software Technology

Reliability will be founded in computer aided methods, Ada-technolog) domain extensions to in-
clude system views, formal methods for functional correctness (and security), and automated con-
figuration control processes for a new reusable-software evolution concept.

4.4.2.1 Computer Aided Methods

Several tools are available in the Ada repository on SIMTEL20 to aid in the software development
process. Another class of tools that could Lontribute to more reliable software in the near-term are
known as validation capabilities as represented by the Stanford University, ANNA (ANNotated
Ada) specification and validation system. Capabilities of this software need to be identified and
integrated into the system environment.

4.4.2.2 Domain Integration

The classical software engineering process has been generally defined in terms of a series of activities
proceeding sequentially from requirements, to specifications, to design, to coding, to testing, and
finally to maintenance. The Ada language has tightly coupled the design and coding steps through
the Ada package feature. Many compiler builders use the DIANA (Descriptive Intermediate At-
tribute Notation for Ada) internal representation of the Ada language and a technology called di-
rected attribute trees to describe relationships. The directed attribute tree technology is supported
by the Ada compiler industry base. It includes methods similar to those used by the university and
academic research community to relate policy statements to policy models, and top level specifica-
tions and detailed design specifications to formal verification techniques. This observation has
prompted the proposal to explore the integration of Ada package designs, upward to the top level
specification and requirements domains b) involving relationships at the internal representation
level. The new industrial base would be used in developing these concepts.

There are some fundamental new research issues associated with this concept, but a demonstration
of feasibility could open a powerful new approach to integrating thc specification dfid digi pi uoeb
that would make a major contribution to software reliability.

The extent to which Ada has been useful in the STARS/VHSIC sponsored effort to describe
hardware design, as a first step toNward an integrated sy stem design process addressing both software
and hardware, suggests that the design process could be extended downward to include hardware
and systems domains in an integrated way. Such a downward unification 'A ould also contribute to
system reliability. These sorts of opportunities will be explored in STARS.

SECTION 4 - TECIlNICAL PROGRAM 20



4.4.2.3 Formal Metho, .s

Formal mathematical methods have been used to "verify" that two different descriptions (e.g., top
level specification and detailed design) of the same s),stem are consistent. Formal methods offer one
approach to improve software reliability. Their use is prominent in the development of trusted,
multi-level secure operating systems. The methods have also been used for correctness and reli-
ability analysis of some critical, high value MCCR systems.

Today's methods are, however, not affordable for widespread app!ication. As one progresses from
the functional requirement, to top level specification, to detail design, to code, and to execution, the
process of "verifying" full and exact correspondence between successive views of the same system
becomes increasingly difficult. The research needed to develop -nd productize formal methods for
widespread application would exceed current STARS funding levels. STARS will maintain close
coordination with those DoD Agencies with primary responsibilities acquiring such capabilities.
At a minimum the Ada Joint Program Office effort to develop formal srnantics for Ada must
continue with U.S. participation. Some STARS projects in these areas are planned within available
funding limitations. STARS may- fund some development of Boycr-Moore theorem provers in
Ada and for Ada. These activities will be coordinated with those of the National Computer Secu-
rity Center and organizations using formal methods for functional correctness analyses.

4.5 Breakthrough Initiatives [R]
Experience in shadow demonstrations, environment applications and technology development vvill
provide the basis for annual industry briefings, at Nwhich fundamental research issues will be identi-
fied for creative industry research. Pre-prototype projects will provide a new model for dealing with
high-risk MCCR acquisition issues.

The present, requirements-directed approaches have historically focused on the development of
elaborate specifications before the fundamental problems are identified and understood. This leads
to partially or completely ineffective software and systems or runaway development costs. This
"waterfall" approach guarantees a slim chance of meeting the initial system requirements.

An alternative approach to risk reduction is to cultivate multiple paths to the desired system. As
the engineering development activities proceed, some solutions will produce changes to the baseline
system with a reasonable effort, but other solutions will require additional technology tasks. In the
same manner, some technology activities Nill flow directly back to the engineering development,
while other technologies will require breakthrough developments to establish potential use in the
project.

This method is synergistic with the software-first life cycle, as alternative solutions are developed
and e~aluated throughout the program. A portion of the development budget is continuously spent
looking for breakthroughs, and risk is accepted throughout the life cy cle. There is no great technical
wall that blocks progress or delays development.

The general model for breakthrough initiatives is diagrammed in Figure 4-2.

SECTION 4- "TECHNICAL PROGRAM 21



time

Baseline
System

Technology0
Development

Breakthrough QInitiaive s

A requirements

,Ncapabilities

Figure 4-2: Breakthrough Initiatives

SECTION 4 - TECHNICAL PROGRAM 22



SECTION 5 - TECHNICAL GUIDANCE [R]
The following general technical guidance will apply to all STARS activities:

" The STARS program will place strong emphasis on the development of compilable specifica-
tions, designs and executable code in Ada. To ihe maximum extent feasible, all code will be
in machine independent Ada. The syntax and semantics of Ada will be used to the maximum
in all supporting and descriptive work. Design will be developed using Ada as the Program
Design Language. The designs should be compilable using any validated Ada compiler. De-
sign information should be contained in compilable and executable Ada rather than textual
comments. No comment information will be included in code products which are duplicated
in processable Ada.

* All deliverable code will be compiled and executed by Ada compilers operating on at least two
different instruction set architectures to encourage developers to include machine independence
considerations from the design forward.

* Compliance with DoD Directive 5000.31 or equivalent policy statements on the use of Ada is
mandatory unless justified and explicitly approved in writing. Failure to comply will result in
the decrement of a participating executing agency's following year funding by the dollar
amount -f projects not in compliance.

" DoD, national, and international standards will be used and supported. Emerging standards
will be monitored and incorporated when possible.

* Ada will be the "command language" for interfacing between programs and for interfacing to
the menus, and displays at the man-machine interface. Opportunities for using window inter-
faces should be explored.

* Design should proceed by refinement and modification of product code. The design statements
should be suitable for maintenance throughout the software life so that the final code contains
the accurate design information.

" The description of systems to be verified will be in an Ada form. Such restrictions and mod-
ifications to the exact language as are required for the particular technique under investigation
will be kept to a minimum and explicitly justified.

- Maximum use will be made of automated tools. Because of the language commonality (i.e.,
all tools and environments will be in and for Ada) the construction and sharing of tools will
be facilitated.

As a general practice, studies and activities that do not lead to, or accompany, the delivery of
executable products in and for the Ada technology, shall not be funded.

All proposals for contract or government internal work will be judged on the technical merits
of the write-up that should include, but not be limited to:
* Statement of problem or opportunity
" Identification of prior and related work
" Identification of potential applications and users
- Summary of pertinent literature
" Summary of applicable standards
" Nature of expected contributions or benefits
* Basis for expected contributions

SECTION 5 -TECHNICAL GUIDANCE IRI 23



0 Cost estimates
• Basis for cost estimates
* Demonstration that work has not been done

" Documentation standards must be defincd early in the contract performance period. The in-
tent is to share the documents in the same fashion as the Ada code. To facilitate this sharing,
the documents must be delivered in a common electronic form that has reasonable support
within the industry.

* All deliveries will be in electronic and hardcopy forms. General access computer repositories
will be used to store the deliveries.

* The intent is to place all delivered work into the public domain. Appropriate Federal Acqui-
sition Regulations (FAR) will be specified in the contracts to cover the data rights issues.

* A peer review process will be used to ensure quality and usefulness of deliverables. The peer
review process must be defined early in the performance period. The use of electronic mail
networks is encouraged.

SECTION 5 - TECHNICAL GUIDANCE IRI 24



SECTION 6- PRODUCTS AND MILESTONES
The STARS program is structured to reach several milestones and produce specific products. They
include:

6.1 Shadow MCCR Systems [R]
Twelve MCCR Shadow demonstrations were conducted between FY 1986 and FY 1988, with the
aid of STARS funding. These demonstrations resulted in delivery of operational, mission quality
Ada software suitable for use by the Services. Additional information on these projects is in Ap-
pendix B.

6.2 Software Development Environments [R]
Several soft%%are engineering development and maintenance environments, each specialized for a
particular applications domain, will be delivered uider the prime contracts. A family of software
engineering tools to support a reliable and adaptable software technology consistent with an ev-
olutionary softN are-first approach to systems acquisition will be delivered and refined during the
STARS program. Additional information on the environments is presented in Appendix C and ihe
Competing Prime Contractors Consolidated Plan 120].

6.3 Technology Development [R]
In the summer of 1984, the WIS Joint Program Office contracted through Naval Ocean System
Center (NOSC) for the development of Ada software. Proposals were sought from industry against
57 categories of software including tools and applications. The work has lead to the delivery of
software, some of which is listed in Section 4.4.1.1.

STARS has built on the successful NOSC initiative and has extended the Ada tools currently
available at the Ada repository on SIMTEL20, by developing a significant quantity 6f reusable
foundation software capabilities in Ada dur;ng FY 1986, 1987 and 1988. The foundation capabili-
ties are discussed in Appendix A.

STARS hill seek to unify, using Ada, a meaningful set (e.g., those covering operating systems, data
base, graphics, network, documentation, etc.) of functional interface standards as a means of es-
tablishing a reusable software technology. This effort will continue throughout the STARS pro-
gram but %%ill be sufficiently mature by FY 1989 to begin adapting the foundation capabilities to
these interface standards.

STARS Aill dcxclop and use improved repository capabilities accessible over MILNET to store
and make available the STARS products and technology. In FY 1986, the Ada repository at
SIMTEL20 was used. In FY 1987, the Naval Research Laboratory (NRL) established a repository
for delixcries under the STARS foundation contracts. This repository will remain operational
through the end of the STARS program.

In FY 1988, two STARS prime contractors, IBM and Boeing, established two separate STARS
repositories. Initially they contained the NOSC and foundation repository material. They are being

SECTION 6 - PRODUCTS AND MILESTONES 25



used to hold all the material delivered under the prime contracts. These repositories will be enlarged
and improved throughout the program. Following the STARS program, they will become the basis
for a robust DoD repository. The prime contractors have defined a road map to products in their
consolidated plan [nn].

6.4 Fundamental Research [R]
STARS will seek to pioneer and demonstrate a new approach for dealing with state-of-the-art
software technology issues in MCCR systems acquisition. The approach will result in several
briefings for industry each year on fundamental issues needing resolution. Additionally a rapid re-
sponse mechanism will be established to fund creative solution proposals from industry.

Rather than attempting to write detailed specifications as the result of the systems engineering
proL,), STARS will instead use pre-prototype and prot6type activities leading to executable, fea-
sibilit, demonstrations of solution approaches. These demonstrations will provide the basis for
credible specifications in support of process and product development, that in turn support mission
applications or environment integration.

SECI'ION 6 - PRODUCTS AND MILESTONES 26



SECTION 7- REFERENCES
II CHARTER, Software Technology for Adaptable, Reliable Systems (STARS), Office of the

Under Secretary of Defense, R. D. DeLauer, 1 November 1984.

121 Memorandum for Joint Logistics Commanders, "Staffing and Management of DoD Soft-
ware Programs," Deputy Secretary of Defense, W. H. Taft, IV; 12 August 1985.

131 STARS Program Requirements Document, Prepared by Joint Logistics Commanders -
Computer Resources Management, Recommended to Deputy Secretary of Defer se, January
1986.

141 STARS Program Management Plan, Submitted by STARS Director, STARS Joint Pro-
gram Office, May 1986.

151 "DoD Computing Activities and Programs - 1985 Specific Market Study," Market Planning
Reference Publications, The Requirements Committee, Government Division, Electronic
Industries Association (EIA), December 1985.

161 US Army Science Advisory Board (SAB), 1983 Summer Study on Acquiring Army Soft-
ware, December 1983, Department of the Army, Assistant Secretary of the Army, Research,
Development, and Acquisition, Washington, D.C. 20310.

171 USAF Science Advisory Board Ad Hoc Committee on the High Cost and Risk of Mission
Critical Software, December 1983.

181 Defense Science Board (DSB) Task Force on Software, Chartered by the USDRE, 2 No-
vember 1984. (The Task Force Chairman, Dr. Fred Brooks, presented a preview of DSB
finding to DUSD (R&AT) in April 1986).

191 "An Assessment of the STARS Program September-October 1985," prepared for the
USDR&E by the Institute for Defense Analyses, in three volumes, December 1985.

1101 Greene, J. S. Jr., "The National Computer Security Center", SIGNAL, Journal of the
Armed Forces Communications and Electronic Association, September 1985.

111 Schill, J., Smeaton, R., and Jackman, R., The Conversion of Command & Control Software
to Ada: Experiences and Lessons Learned, Ada Letters, SigAda Special Interest ACM, Vol
IV, Issue 4, January-February 1985.

1121 Whitaker, W.A., Keynote Address, Second International Ada Applications and Environ-
ments Conference, sponsored by the Institute of Electrical and Electronics Engineers,
Miami, Florida, 8-10 April 1986.

1131 Boehm, B., Software Engineering Economics, Prentice-Hall, NY, 1981.

1141 Boehm, B. and Standish, "Software Technology in the 1990's Using an Evolutionary
Paradigm", IEEE COMPUTER, Vol 16, No. 11, pp 30-38, November 1983.

1151 Reference Manual for the Ada Language, ANSI/MIL-STD-1815A, Department of Defense,
February 17, 1983.

1161 Defense System Software Development Military Standard, DoD-STD-2167, Department of
Defense, 4 June 1985.

SECTION 7 - REFERENCES 27



a I

[171 Nash, S. H., Redwine, S. T, Jr., "Information Interface Related Standards, Guidelines, and
Recommended Practices", IDA Paper P-1842, Institute for Defense Analyses, 1801 N.
Beauregard St., Alexandria, VA 22311, July 1985.

1181 Strategy for the Software Initiative (STARS), DUSD (R&AT)/Dir CSS, March 1983.

1191 "Command Control Information Processing for the 1980s", CCIP-85, Published in 12 vol-
umes, United States Air Force, September 1972.

[201 IBM Systems Integration Division, "Consolidated Technical Development Plan for the
Software Technology for Adaptable, Reliable Systems (STARS) Competing Prine Con-
tractors", CDRL Sequence No. 0070, November 11, 1988.

SECTION 7 - REFERENCES 28



SECTION 8- ACRONYMS [R]
Acronym M'eaning

AJPO Ada Joint Program Office

ANNA Annotated Ada

ANSI American National Standards Institute

APSE Ada Programming Support Enviroament

CALS Computer-Aided Acquisition and Logistics Support

CDRL Contract Data Requirements List

DoD (United States) Department of Defense

DARPA Defense Advanced Research Projects Agency

DIANA Descriptive Intermediate Attributed Notation for Ada

ERA Entity- Relationship-Attribute

FAR Federal Acquisition Regulations

IBM International Business Machines

IEEE Institute of Electrical and Electronic Engineers

IRDS Information Resource Dictionary System

JLC Joint Logistics Commanders

MCCR Mission Critical Computer Resource

NOSC Naval Ocean System Center

NRL Naval Research Laboratory

OSI Open Systems Interconnect

PDL Program Design Language

PIMP (STARS) Program Management Plan

POSIX Portable Operating Systems

SDI Strategic Defense Initiative

SEE Software Engineering Environment

SEI Software Engineering Institute

SGML Standard Generalized Markup Language

SQL Structured Query Language

SECT1ION 8 - ACRONYMS [RI 29



STARS Software Technology for Adaptable, Reliable Systems

TPP (STARS) Technical Program Plan

USDRE Under Secretary of Defense for Research and Engineering

WIS WWMCCS Information System

WW'N,-,MCCS World Wide Military Command and Control System

WYSIWYG What-you-see-is-what-you-get

SECTION 8 - ACRONYMS IR] 30



Appendix A. FOUNDATION PROGRAM
Foundation capabilities developed in FY 1986 through FY 1988 provided general capabilities that
will support future STARS program efforts. These capabilities are applicable to the preparation
of both automated environments and end-application software systems.

A, l General Fragment Capabilities
The general components, applicable to the preparation of both automated environments and end-
application systems, fall into six categories:

* Command languages.
* Text processing.
* Database.
* Operating systems.
* Graphics.
* Network protocols.

These are discussed in the following subsections.

A.1.1 Command Languages
A command language pros ides a communication interface between a computer system and its us-

ers. It must enable each user to solve problems on a semantic level appropriate to those problems.

In most DoD software developments, there are usually DoD developerjusers of varying levels of
expertise "ho must communicate Aith the host development system and with each other. Their
interactions need to be facilitated by a common, uniform, consistent interface.

Activities in thib category A ill proN ide prototypes of a variety of command languages and command
languace support f.cilities. The protot)pes should provide multiple options for program control
and allow the user to manipulate the system, control the session and data, manage processes and
resources, and package primitih e commands. These prototypes will allow for the development of
uniform, consistent man,'machine interfaces. The separable functions of the command language
capabilities should be partitioned into packages to facilitate maintenance.

Specific activities falling within this area could include:

* Emulation of a form-terminal on a page-terminal.: Command string parser/interpreters.
Command language implementations conforming to existing standards.

* Form-based implementations of standard command languages.
* Form and menu generation tools for bitmap-, page- and forms-terminals.
* Guidelines for interface design.
* Interface to existing components, such as "window" systems.

Appendix A. FOUNDATION PROGRAM 31



A.1.2 Document/Text Preparation

The objectives for these activities should be to develop a prototype Ada-based "document man-
agement" system with capabilities for, but not limited to, wurd processing, providing output with
multiple-type fonts, user-oriented "help" messages tailored to the operations being performed, and
user history and expertise. Design issues to be resolved should include the provision for compat-
ibility with multiple subsystems that may not have been completely definedideveloped, the ability
.o use a variety of input,'output devices, the capability of using textual syntax/semantics to provide

assistance in document preparation.

Prototypes here should include those for demonstration of (1) automatic generation of text-based
systems, (2) user interfaces for text processing, and (3) integrated packages of writer's workbench
tools. Emphasis should be towards "what you see is what you get (WYSIWYG)" systems which
permit multiple views. Preparation of electronic documents and of reasonable quality paper doc-
uments should be prototyped first. All these prototypes should be extensible. These systems
should assume and plan for advanced input'output technologies, should be input,'output device
independent, and should use virtual input,'output devices. They may potentially use and integrate
with the latest in desk top publishing.

Specific projects falling within this area could include:

" Text/editor formatter generators.
* Interface modules supporting common document preparation tasks.

A.1.3 Database Support

The object'ves for these activities should include prototype demonstration of potentially standard
Ada interface for a portable commercial off-the-shelf DBMS. The prototype Ada-DBMS might
provide capabilities for data base definition, including the provision of multiple views (i.e., rela-
tional, network hierarchical) of the same database, efficient retrieval and update of individual objects
or groups of logically related database objects, authorization control to the field or attribute level,
capable of expansion to provide multi-level security control (e.g., prohibiting a query that is au-
thorized to access aggregated data at a given clasifi .ation from generating secondary accesses to
data objects at a higher security classifliation), multiple interfaces, including programming and
query languages, screen-oriented command languagc,'di.splays, bulk, load/unload facilities, report
writer and application generator, multiple user a,,cess with ba.kup and recover; and database ad-
ministration and control.

Design issues which might be resolved herc hn'Aad supprt of fully distributed access, including
partial or full replication of objects; the abilit) to incorpolate "database machines" or "back-end
database processor" technology for retrieval opciAtions, exre ,rt system interfaces, verifiable security
protection including the ability to operate in a multi-lecl becurity environment, efficient processing
of multiple views or schema, ard hardware independence and portability to include optimization
of retrieval strategies.

The following potential database management system tools/components should be considered for
prototyping.

* An indexed file access package.
* An entity-relationship-attribute package.
* A concurrency control package.
* A work station relational database system package.
• A multi-user relational database system package.
* A relational database design tool kit.
* A view definition facility.
* A view query and update facility.
* An object manager system.
* An authorization package.
• A database query optimizer/compiler.
• A distributed database access package.
* Distributed database protocol management.

Appendix A. FOUNDATION-PROGRAM 32



* Database operational tools.
* Database application tools.

Based on criteria which emphasize independence, general understanding of functionality and im-
plementation methods, and immediate usefulness, three components can be identified as candidates
for early implementation. indexed file access package, work station relational database system, and
database application tools. It appears reasonable to prototype these components in parallel.

A.1.4 Operating System Fragments

A set of operating system component prototypes could be both reliable and portable if written in
Ada. Such components would include discretionary and mandatory access control at the B3 level,
and account for uniprocessors, multi-processors, and multi-computer systems. These prototypes
could initially support one local area network. However, their design and implementation might
not preclude, nor make more difficult their interaction with other Local Area Networks (LAN's).
A prototype set of operating system components could have the following attributes. fault toler-
ance, survivability, multi-level security at or above the B3 level, portability of applications and
system software across a wide variety of machine sizes and types, single and multi-thread machines,
multiple priorities, real-time processing, and fully integrated databases.

Operating system prototyping and developmental activities could concern a Nariety of topics, in-
cluding:

* Kernel operating systems.
• Bindings to standard systems.
• Program execution support module.
* File manager.
• Authentication server.

T rime synchronization agent.
* Transaction manager.
• Inter-process communication support.
• Alias processes supporting access to remote LAN's.
* Print server.
• Input/output drivers.
• Multi-window system.
• Logging and auditing facilities.

A.1.5 Graphics Support

A high-level conceptual model of a graphics support s) stem could be prototyped. The model could
be a pipeline showing the flow of information and control between one or more application pro-
grams and the graphics display and input hardw are. The model could illustrate specific components
of a graphics support system. Primarily, these components %%ould be the visual objects (their defi-
nition and manipulation), a window management system, and an image generation system.

An object-oriented approach could be adopted in which the application program deals with high-
level "visual objects", such as menus and icons, rather than just primitives as points and lines.
Possible activities for prototyping specific parts of this model include:

* Visual object spec.iication techniques.
* Interfaces supporting reuse of visual objects.
* Coordination/management support for descriptions employing visual objects.
• Image generation capabilities.
* Window managers.
* Computer graphics interfaces.
• Graphics command, input, output processors.
* Graphics interchange formats.

Appendix A. FOUNDATION PROGRAM 33



A.1.6 Network Support

Transfer of a variety of types of information to both local and remote users and systems is a com-
mon characteristic of many DoD development environments and end-application systems. Access
to these systems' capabilities, both the functions and data, are likely to be accomplished using a
LAN architecture in both automated environment and end-application systems. Access to other
sites and remote s5stems and data are likely to be accomplished using intercomputer networking
capabilities through the Defense Data Network (DDN).

The needs for network services necessitate tools to build integrated communications subsystems.
To realize the benefits of the distributed processing concept, any number of components (hardware
and software) from different sources must be able to communicate among themselves by using
predetermined protocols. Current DoD protocols are likely to be used in the near term. However,
activity in the international standardization community indicates that at some time in the future,
ISO protocols may be used for network communication functions. As services are expanded the
need for new applications and lower-level protocols grows. Given the experience of the
ARPANET, methods which can reduce the complexity and resources needed for new protocol
specification and implementation are likely to be necessary for developing and using many DoD
systems. Use of the DDN as the long-haul backbone raises the questions of how inter-
communications routing will be accomplished when additional factors beyond shortest distance
must be accommodated. Prototyping activities in this area could include:

* Ada-based implementation of ISO and DoD transport and internet protocols.
* Generators of Ada protocol software.

I Multi-variable objective functions supporting the optimization of network routing.
* Ada bindings to standards implementations.

A.2 Attomated Environinent Fragment Capabilities
Some of the fragments in the repository will only serve the need to develop automated environ-
ments Particularly important in this regard are fragments supporting preliminary and detailed de-
sign Also of interest would be fragnents that support software development process definition and
project specific customization.

A.2.1 Design Description and Analysis

Careful attention to design is essential to achieving the benefits of software reliability, efficiency,
maintainability), and portability. Automated support can substantially improve the design process
and the fragments developed in this set of activities will develop currently promising concepts for
providing this automated support.

The emphasis in the near term is upon design. This allows early results by capitalizing on tech-
nology that has apparent value but has not been brought to the Ada arena. It also provides foun-
dation for later work on tools supporting other life cycle phases.

Example activities in this area are:.

* Advanced Ada Program Design Languages (PDL's).
* PDL support tools.
* Graphics support tools for software design.
* Automatic code generation from design.
* Reverse design description from existing code.

A.3 Foundation Deliveries [R]
By the end of CY 1988, over twenty-five foundation contracts had been completed. These con-
tracts have produced a significant base of fragments that show innovatihe use of Ada and are im-

Appendix A. FOUNDATION PROGRAM 34



mediatel) useful in Ada software engineering environments. These capabilities were demonstrated
at two separate foundation conferences held during 1988.

The Naval Research Laboratory (NRL) in Washington D.C has agreed to manage and coordinate
the foundation deliveries. A computer repository has been established to hold the deliveries. In-
terested parties will be permitted access by submitting a request form to the NRL Research Com-
puter Division. A list of the fragments deivered is maintained on the repository. These foundation
deliveries are also available from the IBM and Boeing STARS prime repositories.

Appendix A. FOUNDATION PROGRAM 35



Appendix B. SHADOW PROJECTS [R]
From CY 1985 through CY 1988, the STARS program funded several projects to "shadow"
planned DoD application development. These projects have resulted in the development and de-
livery of successful MCCR software written in Ada.. The funded projects were:

* Common Ada Missile Packages (CAMP)

CAMP applied reusable Ada software concepts to DoD missile systems. CAMP also devel-
oped and demonstrated a prototype DoD software composition system.

* Ada Based Signal Processing

This project was a software conversion demonstration of a data-flow graphic form technique
for building adaptable systems for signal processing.

* Ada Based Integrated Control System (ABICS)

ABICS enables the development and application of Ada software to flight-critical avionics
systems This project demonstrated the application of reusable software parts to the Advanced
Tactical Fighter.

" Pilot Ada Capabilities Transition (PACT) Projects

Candidate PACT projects were identified from each service by the Software Engineering In-
stitute (SEI). The projects selected were using commercially available Ada environmentb and
state-of-the-practice software engineering techniques. This initial work helped establish a
baseline for measuring future STARS progress and provided lessons learned to help evolve the
Ada software engineering process.

* Several service projects were supported under the technology thrust of applying Ada:

" Air Force F- 111 Digital Flight Control System
" Air Force Advanced Millimeter Wave Seeker
" Air Force FI5 APG8 Radar System
* Army Distributed Computer Design System (DCDS)
" Navy Multi-Ping Computer Program AN/SQS53C
" Navy Command and Control Processor

Presentations on the results of these projects have been made at the STARS workshops and Ada
conferences. Specific information on the success of these projects is available from the project
managers.

Appendix B. SHADOW PROJECTS IR! 36



Appendix C. PRIME CONTRACTORS [R]

B.1 Consolidated Plan [R]
In 1988, three prime STARS contractors were sclected: Boeing Aerospace Company, International
Business Machines Corporation and the Unisys Corporation. The contractors will operate in as-
sociate contractor roles in which the plans, approaches and results will bc shared in an effort to find
the best solution to the problems being addressed by the STARS program. A plan was prepared
early in the contract period that consolidated the three separate plans into a single consolidated five
year plan [R].

The thrust of the consolidated plan is to produce a technology base and demonstrate the potential
of that base. The success of the plan depends on obtaining the support of the Software Engineering
community both within industry and the government. Much of the effort will involve adapting
technology which has been or will be developed and integrating it into a common base. This plan
does not provide a total solution. The unique environment capabilities necessary to support ap-
plication domains and fully populated application domain component libraries will not be provided
at the present funding level. The focus will be on a common portable base for environment capa-
bilities and common cross domain capabilities and components. The emphasis on adaptability will
allow groups outside of STARS to use the products and add to them, extending the environment
to provide complete application domain support.

The prime STARS program will produce three major products. a new software life cycle process,
an environment, and a repository. The environment will form the base for the STARS products.
The new life cycle process definition will be made tangible in the environment through a process
manager, a process model and an object model definition which drives the mechanism. The re-
pository N% ill be an instance of the environment instantiated for the reuse process. The environment
itself is an adaptable mechanism providing a common, portable basic set of functions and an
adaptable set of capabilities necessary to support software engineering.

B.2 First Increment Deliveries [R]
During the first increment of the STARS prime contracts, over two hundred deliveries were made.
These deliveries contain a significant body of experiences and development. They provide a basis
for the subsequent STARS prime contractor increments. The deliveries arc available on the
STARS prime contractor repositories for review and comment.

Appendix C. PRIME CONTRACTORS IRI 37


